This paper investigates a movable antenna (MA)-assisted multiuser integrated sensing and communication (ISAC) system, where the base station (BS) and communication users are all equipped with MA for improving both the sensing and communication performance. We employ the Cramer-Rao bound (CRB) as the performance metric of sensing, thus a joint beamforming design and MAs' position optimizing problem is formulated to minimize the CRB. However the resulting optimization problem is NP-hard and the variables are highly coupled. To tackle this problem, we propose an alternating optimization (AO) framework by adopting semidefinite relaxation (SDR) and successive convex approximation (SCA) technique. Numerical results reveal that the proposed MA-assisted ISAC system achieves lower estimation CRB compared to the fixed-position antenna (FPA) counterpart.