Abstract:In this paper, a discrete reconfigurable intelligent surface (RIS)-assisted spatial shift keying (SSK) multiple-input multiple-output (MIMO) scheme is investigated, in which a direct link between the transmitter and the receiver is considered. To improve the reliability of the RIS-SSK-MIMO scheme, we formulate an objective function based on minimizing the average bit error probability (ABEP). Since the reflecting phase shift of RIS is discrete, it is difficult to address this problem directly. To this end, we optimize the RIS phase shift to maximize the Euclidean distance between the minimum constellations by applying the successive convex approximation (SCA) and penaltyalternating optimization method. Simulation results verify the superiority of the proposed RIS-SSK-MIMO scheme and demonstrate the impact of the number of RIS elements, the number of phase quantization bits, and the number of receive and transmit antennas in terms of reliability.
Abstract:This paper presents a novel multi-stream downlink communication system that utilizes a transmissive reconfigurable intelligent surface (RIS) transceiver. Specifically, we elaborate the downlink communication scheme using time-modulated array (TMA) technology, which enables high order modulation and multi-stream beamforming. Then, an optimization problem is formulated to maximize the minimum signal-to-interference-plusnoise ratio (SINR) with user fairness, which takes into account the constraint of the maximum available power for each transmissive element. Due to the non-convex nature of the formulated problem,finding optimal solution is challenging. To mitigate the complexity,we propose a linear-complexity beamforming algorithm based on consensus alternating direction method of multipliers (ADMM).Specifically, by introducing a set of auxiliary variables, the problem can be decomposed into multiple sub-problems that are amenable to parallel computation, where the each sub-problem can yield closed-form expressions, bringing a significant reduction in the computational complexity. The overall problem achieves convergence by iteratively addressing these sub-problems in an alternating manner. Finally, the convergence of the proposed algorithm and the impact of various parameter configurations on the system performance are validated through numerical simulations.
Abstract:In this paper, we propose a novel transmissive reconfigurable intelligent surface transceiver-enhanced robust and secure integrated sensing and communication network. A time-division sensing communication mechanism is designed for the scenario, which enables communication and sensing to share wireless resources. To address the interference management problem and hinder eavesdropping, we implement rate-splitting multiple access (RSMA), where the common stream is designed as a useful signal and an artificial noise, while taking into account the imperfect channel state information and modeling the channel for the illegal users in a fine-grained manner as well as giving an upper bound on the error. We introduce the secrecy outage probability and construct an optimization problem with secrecy sum-rate as the objective functions to optimize the common stream beamforming matrix, the private stream beamforming matrix and the timeslot duration variable. Due to the coupling of the optimization variables and the infinity of the error set, the proposed problem is a nonconvex optimization problem that cannot be solved directly. In order to address the above challenges, the block coordinate descent-based second-order cone programming algorithm is used to decouple the optimization variables and solving the problem. Specifically, the problem is decoupled into two subproblems concerning the common stream beamforming matrix, the private stream beamforming matrix, and the timeslot duration variable, which are solved by alternating optimization until convergence is reached. To solve the problem, S-procedure, Bernstein's inequality and successive convex approximation are employed to deal with the objective function and non-convex constraints. Numerical simulation results verify the superiority of the proposed scheme in improving the secrecy energy efficiency and the Cram\'{e}r-Rao boundary.
Abstract:This paper studies a multiple intelligent reflecting surfaces (IRSs) collaborative localization system where multiple semi-passive IRSs are deployed in the network to locate one or more targets based on time-of-arrival. It is assumed that each semi-passive IRS is equipped with reflective elements and sensors, which are used to establish the line-of-sight links from the base station (BS) to multiple targets and process echo signals, respectively. Based on the above model, we derive the Fisher information matrix of the echo signal with respect to the time delay. By employing the chain rule and exploiting the geometric relationship between time delay and position, the Cramer-Rao bound (CRB) for estimating the target's Cartesian coordinate position is derived. Then, we propose a two-stage algorithmic framework to minimize CRB in single- and multi-target localization systems by joint optimizing active beamforming at BS, passive beamforming at multiple IRSs and IRS selection. For the single-target case, we derive the optimal closed-form solution for multiple IRSs coefficients design and propose a lowcomplexity algorithm based on alternating direction method of multipliers to obtain the optimal solution for active beaming design. For the multi-target case, alternating optimization is used to transform the original problem into two subproblems where semi-definite relaxation and successive convex approximation are applied to tackle the quadraticity and indefiniteness in the CRB expression, respectively. Finally, numerical simulation results validate the effectiveness of the proposed algorithm for multiple IRSs collaborative localization system compared to other benchmark schemes as well as the significant performance gains.
Abstract:This letter investigates a short-packet downlink transmission system using non-orthogonal multiple access (NOMA) enhanced via movable antenna (MA). We focuses on maximizing the effective throughput for a core user while ensuring reliable communication for an edge user by optimizing the MAs' coordinates and the power and rate allocations from the access point (AP). The optimization challenge is approached by decomposing it into two subproblems, utilizing successive convex approximation (SCA) to handle the highly non-concave nature of channel gains. Numerical results confirm that the proposed solution offers substantial improvements in effective throughput compared to NOMA short-packet communication with fixed position antennas (FPAs).
Abstract:This paper investigates a novel communication paradigm employing movable antennas (MAs) within a multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) downlink framework, where users are equipped with MAs. Initially, leveraging the far-field response, we delineate the channel characteristics concerning both the power allocation coefficient and positions of MAs. Subsequently, we endeavor to maximize the channel capacity by jointly optimizing power allocation and antenna positions. To tackle the resultant non-convex problem, we propose an alternating optimization (AO) scheme underpinned by successive convex approximation (SCA) to converge towards a stationary point. Through numerical simulations, our findings substantiate the superiority of the MA-assisted NOMA system over both orthogonal multiple access (OMA) and conventional NOMA configurations in terms of average sum rate and outage probability.
Abstract:This paper explores the performance of reconfigurable intelligent surface (RIS) assisted spatial modulation (SM) downlink communication systems, focusing on the average bit error probability (ABEP). Notably, in scenarios with a large number of reflecting units, the composite channel can be approximated by a Gaussian distribution using the central limit theorem. The receiver utilizes a maximum likelihood detector to recover information in both spatial and symbol domains. In the proposed RIS-SM system, we analytically derive a closed-form expression for the union tight upper bound of ABEP, employing the Gaussian-Chebyshev quadrature method. The validity of these results is rigorously confirmed through exhaustive Monte Carlo simulations.
Abstract:In this paper, we propose a novel transmissive reconfigurable intelligent surface (TRIS) transmitter-enabled spatial modulation (SM) multiple-input multiple-output (MIMO) system. In the transmission phase, a column-wise activation strategy is implemented for the TRIS panel, where the specific column elements are activated per time slot. Concurrently, the receiver employs the maximum likelihood detection technique. Based on this, for the transmit signals, we derive the closed-form expressions for the upper bounds of the average bit error probability (ABEP) of the proposed scheme from different perspectives, employing both vector-based and element-based approaches. Furthermore, we provide the asymptotic closed-form expressions for the ABEP of the TRIS-SM scheme, as well as the diversity gain. To improve the performance of the proposed TRIS-SM system, we optimize ABEP with a fixed data rate. Additionally, we provide lower bounds to simplify the computational complexity of improved TRIS-SM scheme. The Monte Carlo simulation method is used to validate the theoretical derivations exhaustively. The results demonstrate that the proposed TRIS-SM scheme can achieve better ABEP performance compared to the conventional SM scheme. Furthermore, the improved TRIS-SM scheme outperforms the TRIS-SM scheme in terms of reliability.
Abstract:Reconfigurable intelligent surface (RIS)-assisted index modulation system schemes are considered a promising technology for sixth-generation (6G) wireless communication systems, which can enhance various system capabilities such as coverage and reliability. However, obtaining perfect channel state information (CSI) is challenging due to the lack of a radio frequency chain in RIS. In this paper, we investigate the RIS-assisted full-duplex (FD) two-way space shift keying (SSK) system under imperfect CSI, where the signal emissions are augmented by deploying RISs in the vicinity of two FD users. The maximum likelihood detector is utilized to recover the transmit antenna index. With this in mind, we derive closed-form average bit error probability (ABEP) expression based on the Gaussian-Chebyshev quadrature (GCQ) method and provide the upper bound and asymptotic ABEP expressions in the presence of channel estimation errors. To gain more insights, we also derive the outage probability and provide the throughput of the proposed scheme with imperfect CSI. The correctness of the analytical derivation results is confirmed via Monte Carlo simulations. It is demonstrated that increasing the number of elements of RIS can significantly improve the ABEP performance of the FD system over the half-duplex (HD) system. Furthermore, in the high SNR region, the ABEP performance of the FD system is better than that of the HD system.
Abstract:In this study, we explore the performance of a reconfigurable reflecting surface (RIS)-assisted transmit spatial modulation (SM) system for downlink transmission, wherein the deployment of RIS serves the purpose of blind area coverage within the channel. At the receiving end, we present three detectors, i.e., maximum likelihood (ML) detector, two-stage ML detection, and greedy detector to recover the transmitted signal. By utilizing the ML detector, we initially derive the conditional pair error probability expression for the proposed scheme. Subsequently, we leverage the central limit theorem (CLT) to obtain the probability density function of the combined channel. Following this, the Gaussian-Chebyshev quadrature method is applied to derive a closed-form expression for the unconditional pair error probability and establish the union tight upper bound for the average bit error probability (ABEP). Furthermore, we derive a closed-form expression for the ergodic capacity of the proposed RIS-SM scheme. Monte Carlo simulations are conducted not only to assess the complexity and reliability of the three detection algorithms but also to validate the results obtained through theoretical derivation results.