Abstract:In this paper, a discrete reconfigurable intelligent surface (RIS)-assisted spatial shift keying (SSK) multiple-input multiple-output (MIMO) scheme is investigated, in which a direct link between the transmitter and the receiver is considered. To improve the reliability of the RIS-SSK-MIMO scheme, we formulate an objective function based on minimizing the average bit error probability (ABEP). Since the reflecting phase shift of RIS is discrete, it is difficult to address this problem directly. To this end, we optimize the RIS phase shift to maximize the Euclidean distance between the minimum constellations by applying the successive convex approximation (SCA) and penaltyalternating optimization method. Simulation results verify the superiority of the proposed RIS-SSK-MIMO scheme and demonstrate the impact of the number of RIS elements, the number of phase quantization bits, and the number of receive and transmit antennas in terms of reliability.
Abstract:This letter investigates a short-packet downlink transmission system using non-orthogonal multiple access (NOMA) enhanced via movable antenna (MA). We focuses on maximizing the effective throughput for a core user while ensuring reliable communication for an edge user by optimizing the MAs' coordinates and the power and rate allocations from the access point (AP). The optimization challenge is approached by decomposing it into two subproblems, utilizing successive convex approximation (SCA) to handle the highly non-concave nature of channel gains. Numerical results confirm that the proposed solution offers substantial improvements in effective throughput compared to NOMA short-packet communication with fixed position antennas (FPAs).