Abstract:Phone scams pose a significant threat to individuals and communities, causing substantial financial losses and emotional distress. Despite ongoing efforts to combat these scams, scammers continue to adapt and refine their tactics, making it imperative to explore innovative countermeasures. This research explores the potential of large language models (LLMs) to provide detection of fraudulent phone calls. By analyzing the conversational dynamics between scammers and victims, LLM-based detectors can identify potential scams as they occur, offering immediate protection to users. While such approaches demonstrate promising results, we also acknowledge the challenges of biased datasets, relatively low recall, and hallucinations that must be addressed for further advancement in this field
Abstract:Numerous safety- or security-critical systems depend on cameras to perceive their surroundings, further allowing artificial intelligence (AI) to analyze the captured images to make important decisions. However, a concerning attack vector has emerged, namely, electromagnetic waves, which pose a threat to the integrity of these systems. Such attacks enable attackers to manipulate the images remotely, leading to incorrect AI decisions, e.g., autonomous vehicles missing detecting obstacles ahead resulting in collisions. The lack of understanding regarding how different systems react to such attacks poses a significant security risk. Furthermore, no effective solutions have been demonstrated to mitigate this threat. To address these gaps, we modeled the attacks and developed a simulation method for generating adversarial images. Through rigorous analysis, we confirmed that the effects of the simulated adversarial images are indistinguishable from those from real attacks. This method enables researchers and engineers to rapidly assess the susceptibility of various AI vision applications to these attacks, without the need for constructing complicated attack devices. In our experiments, most of the models demonstrated vulnerabilities to these attacks, emphasizing the need to enhance their robustness. Fortunately, our modeling and simulation method serves as a stepping stone toward developing more resilient models. We present a pilot study on adversarial training to improve their robustness against attacks, and our results demonstrate a significant improvement by recovering up to 91% performance, offering a promising direction for mitigating this threat.