Abstract:Encrypted traffic classification is receiving widespread attention from researchers and industrial companies. However, the existing methods only extract flow-level features, failing to handle short flows because of unreliable statistical properties, or treat the header and payload equally, failing to mine the potential correlation between bytes. Therefore, in this paper, we propose a byte-level traffic graph construction approach based on point-wise mutual information (PMI), and a model named Temporal Fusion Encoder using Graph Neural Networks (TFE-GNN) for feature extraction. In particular, we design a dual embedding layer, a GNN-based traffic graph encoder as well as a cross-gated feature fusion mechanism, which can first embed the header and payload bytes separately and then fuses them together to obtain a stronger feature representation. The experimental results on two real datasets demonstrate that TFE-GNN outperforms multiple state-of-the-art methods in fine-grained encrypted traffic classification tasks.
Abstract:Artificial intelligence (AI) systems are becoming critical components of today's IT landscapes. Their resilience against attacks and other environmental influences needs to be ensured just like for other IT assets. Considering the particular nature of AI, and machine learning (ML) in particular, this paper provides an overview of the emerging field of resilient AI and presents research issues the authors identify as potential future work.