Abstract:Retrieval-augmented generation (RAG) has revitalized Large Language Models (LLMs) by injecting non-parametric factual knowledge. Compared with long-context LLMs, RAG is considered an effective summarization tool in a more concise and lightweight manner, which can interact with LLMs multiple times using diverse queries to get comprehensive responses. However, the LLM-generated historical responses, which contain potentially insightful information, are largely neglected and discarded by existing approaches, leading to suboptimal results. In this paper, we propose \textit{graph of records} (\textbf{GoR}), which leverages historical responses generated by LLMs to enhance RAG for long-context global summarization. Inspired by the \textit{retrieve-then-generate} paradigm of RAG, we construct a graph by establishing an edge between the retrieved text chunks and the corresponding LLM-generated response. To further uncover the intricate correlations between them, GoR further features a \textit{graph neural network} and an elaborately designed \textit{BERTScore}-based objective for self-supervised model training, enabling seamless supervision signal backpropagation between reference summaries and node embeddings. We comprehensively compare GoR with 12 baselines across four long-context summarization datasets, and the results indicate that our proposed method reaches the best performance e.g., 15\%, 8\%, and 19\% improvement over retrievers w.r.t. Rouge-L, Rouge-1, and Rouge-2 on the WCEP dataset). Extensive experiments further demonstrate the effectiveness of GoR. Code is available at https://github.com/ulab-uiuc/GoR
Abstract:As network security receives widespread attention, encrypted traffic classification has become the current research focus. However, existing methods conduct traffic classification without sufficiently considering the common characteristics between data samples, leading to suboptimal performance. Moreover, they train the packet-level and flow-level classification tasks independently, which is redundant because the packet representations learned in the packet-level task can be exploited by the flow-level task. Therefore, in this paper, we propose an effective model named a Contrastive Learning Enhanced Temporal Fusion Encoder (CLE-TFE). In particular, we utilize supervised contrastive learning to enhance the packet-level and flow-level representations and perform graph data augmentation on the byte-level traffic graph so that the fine-grained semantic-invariant characteristics between bytes can be captured through contrastive learning. We also propose cross-level multi-task learning, which simultaneously accomplishes the packet-level and flow-level classification tasks in the same model with one training. Further experiments show that CLE-TFE achieves the best overall performance on the two tasks, while its computational overhead (i.e., floating point operations, FLOPs) is only about 1/14 of the pre-trained model (e.g., ET-BERT). We release the code at https://github.com/ViktorAxelsen/CLE-TFE
Abstract:Encrypted traffic classification is receiving widespread attention from researchers and industrial companies. However, the existing methods only extract flow-level features, failing to handle short flows because of unreliable statistical properties, or treat the header and payload equally, failing to mine the potential correlation between bytes. Therefore, in this paper, we propose a byte-level traffic graph construction approach based on point-wise mutual information (PMI), and a model named Temporal Fusion Encoder using Graph Neural Networks (TFE-GNN) for feature extraction. In particular, we design a dual embedding layer, a GNN-based traffic graph encoder as well as a cross-gated feature fusion mechanism, which can first embed the header and payload bytes separately and then fuses them together to obtain a stronger feature representation. The experimental results on two real datasets demonstrate that TFE-GNN outperforms multiple state-of-the-art methods in fine-grained encrypted traffic classification tasks.
Abstract:Temporal Graph Learning, which aims to model the time-evolving nature of graphs, has gained increasing attention and achieved remarkable performance recently. However, in reality, graph structures are often incomplete and noisy, which hinders temporal graph networks (TGNs) from learning informative representations. Graph contrastive learning uses data augmentation to generate plausible variations of existing data and learn robust representations. However, rule-based augmentation approaches may be suboptimal as they lack learnability and fail to leverage rich information from downstream tasks. To address these issues, we propose a Time-aware Graph Structure Learning (TGSL) approach via sequence prediction on temporal graphs, which learns better graph structures for downstream tasks through adding potential temporal edges. In particular, it predicts time-aware context embedding based on previously observed interactions and uses the Gumble-Top-K to select the closest candidate edges to this context embedding. Additionally, several candidate sampling strategies are proposed to ensure both efficiency and diversity. Furthermore, we jointly learn the graph structure and TGNs in an end-to-end manner and perform inference on the refined graph. Extensive experiments on temporal link prediction benchmarks demonstrate that TGSL yields significant gains for the popular TGNs such as TGAT and GraphMixer, and it outperforms other contrastive learning methods on temporal graphs. We will release the code in the future.
Abstract:The classification of electrocardiogram (ECG) signals, which takes much time and suffers from a high rate of misjudgment, is recognized as an extremely challenging task for cardiologists. The major difficulty of the ECG signals classification is caused by the long-term sequence dependencies. Most existing approaches for ECG signal classification use Recurrent Neural Network models, e.g., LSTM and GRU, which are unable to extract accurate features for such long sequences. Other approaches utilize 1-Dimensional Convolutional Neural Network (CNN), such as ResNet or its variant, and they can not make good use of the multi-lead information from ECG signals.Based on the above observations, we develop a multi-scale deep residual network for the ECG signal classification task. We are the first to propose to treat the multi-lead signal as a 2-dimensional matrix and combines multi-scale 2-D convolution blocks with 1-D convolution blocks for feature extraction. Our proposed model achieves 99.2% F1-score in the MIT-BIH dataset and 89.4% F1-score in Alibaba dataset and outperforms the state-of-the-art performance by 2% and 3%, respectively, view related code and data at https://github.com/Amadeuszhao/SE-ECGNet