Abstract:With the rapid development of industrial intelligence and unmanned inspection, reliable perception and safety assessment for AI systems in complex and dynamic industrial sites has become a key bottleneck for deploying predictive maintenance and autonomous inspection. Most public datasets remain limited by simulated data sources, single-modality sensing, or the absence of fine-grained object-level annotations, which prevents robust scene understanding and multimodal safety reasoning for industrial foundation models. To address these limitations, InspecSafe-V1 is released as the first multimodal benchmark dataset for industrial inspection safety assessment that is collected from routine operations of real inspection robots in real-world environments. InspecSafe-V1 covers five representative industrial scenarios, including tunnels, power facilities, sintering equipment, oil and gas petrochemical plants, and coal conveyor trestles. The dataset is constructed from 41 wheeled and rail-mounted inspection robots operating at 2,239 valid inspection sites, yielding 5,013 inspection instances. For each instance, pixel-level segmentation annotations are provided for key objects in visible-spectrum images. In addition, a semantic scene description and a corresponding safety level label are provided according to practical inspection tasks. Seven synchronized sensing modalities are further included, including infrared video, audio, depth point clouds, radar point clouds, gas measurements, temperature, and humidity, to support multimodal anomaly recognition, cross-modal fusion, and comprehensive safety assessment in industrial environments.
Abstract:Accurate downhole positioning is critical in oil and gas operations but is often compromised by signal degradation in traditional surface-based Casing Collar Locator (CCL) monitoring. To address this, we present an in-situ, real-time collar recognition system using embedded neural network. We introduce lightweight "Collar Recognition Nets" (CRNs) optimized for resource-constrained ARM Cortex-M7 microprocessors. By leveraging temporal and depthwise separable convolutions, our most compact model reduces computational complexity to just 8,208 MACs while maintaining an F1 score of 0.972. Hardware validation confirms an average inference latency of 343.2 μs, demonstrating that robust, autonomous signal processing is feasible within the severe power and space limitations of downhole instrumentation.




Abstract:Vision-Language-Action (VLA) models have demonstrated remarkable capabilities in generalizing across diverse robotic manipulation tasks. However, deploying these models in unstructured environments remains challenging due to the critical need for simultaneous task compliance and safety assurance, particularly in preventing potential collisions during physical interactions. In this work, we introduce a Vision-Language-Safe Action (VLSA) architecture, named AEGIS, which contains a plug-and-play safety constraint (SC) layer formulated via control barrier functions. AEGIS integrates directly with existing VLA models to improve safety with theoretical guarantees, while maintaining their original instruction-following performance. To evaluate the efficacy of our architecture, we construct a comprehensive safety-critical benchmark SafeLIBERO, spanning distinct manipulation scenarios characterized by varying degrees of spatial complexity and obstacle intervention. Extensive experiments demonstrate the superiority of our method over state-of-the-art baselines. Notably, AEGIS achieves a 59.16% improvement in obstacle avoidance rate while substantially increasing the task execution success rate by 17.25%. To facilitate reproducibility and future research, we make our code, models, and the benchmark datasets publicly available at https://vlsa-aegis.github.io/.
Abstract:Wasserstein distributionally robust optimization (WDRO) optimizes against worst-case distributional shifts within a specified uncertainty set, leading to enhanced generalization on unseen adversarial examples, compared to standard adversarial training which focuses on pointwise adversarial perturbations. However, WDRO still suffers fundamentally from the robust overfitting problem, as it does not consider statistical error. We address this gap by proposing a novel robust optimization framework under a new uncertainty set for adversarial noise via Wasserstein distance and statistical error via Kullback-Leibler divergence, called the Statistically Robust WDRO. We establish a robust generalization bound for the new optimization framework, implying that out-of-distribution adversarial performance is at least as good as the statistically robust training loss with high probability. Furthermore, we derive conditions under which Stackelberg and Nash equilibria exist between the learner and the adversary, giving an optimal robust model in certain sense. Finally, through extensive experiments, we demonstrate that our method significantly mitigates robust overfitting and enhances robustness within the framework of WDRO.




Abstract:The generalization bound is a crucial theoretical tool for assessing the generalizability of learning methods and there exist vast literatures on generalizability of normal learning, adversarial learning, and data poisoning. Unlike other data poison attacks, the backdoor attack has the special property that the poisoned triggers are contained in both the training set and the test set and the purpose of the attack is two-fold. To our knowledge, the generalization bound for the backdoor attack has not been established. In this paper, we fill this gap by deriving algorithm-independent generalization bounds in the clean-label backdoor attack scenario. Precisely, based on the goals of backdoor attack, we give upper bounds for the clean sample population errors and the poison population errors in terms of the empirical error on the poisoned training dataset. Furthermore, based on the theoretical result, a new clean-label backdoor attack is proposed that computes the poisoning trigger by combining adversarial noise and indiscriminate poison. We show its effectiveness in a variety of settings.




Abstract:Unlearnable example attacks are data poisoning attacks aiming to degrade the clean test accuracy of deep learning by adding imperceptible perturbations to the training samples, which can be formulated as a bi-level optimization problem. However, directly solving this optimization problem is intractable for deep neural networks. In this paper, we investigate unlearnable example attacks from a game-theoretic perspective, by formulating the attack as a nonzero sum Stackelberg game. First, the existence of game equilibria is proved under the normal setting and the adversarial training setting. It is shown that the game equilibrium gives the most powerful poison attack in that the victim has the lowest test accuracy among all networks within the same hypothesis space, when certain loss functions are used. Second, we propose a novel attack method, called the Game Unlearnable Example (GUE), which has three main gradients. (1) The poisons are obtained by directly solving the equilibrium of the Stackelberg game with a first-order algorithm. (2) We employ an autoencoder-like generative network model as the poison attacker. (3) A novel payoff function is introduced to evaluate the performance of the poison. Comprehensive experiments demonstrate that GUE can effectively poison the model in various scenarios. Furthermore, the GUE still works by using a relatively small percentage of the training data to train the generator, and the poison generator can generalize to unseen data well. Our implementation code can be found at https://github.com/hong-xian/gue.




Abstract:Stability analysis is an essential aspect of studying the generalization ability of deep learning, as it involves deriving generalization bounds for stochastic gradient descent-based training algorithms. Adversarial training is the most widely used defense against adversarial example attacks. However, previous generalization bounds for adversarial training have not included information regarding the data distribution. In this paper, we fill this gap by providing generalization bounds for stochastic gradient descent-based adversarial training that incorporate data distribution information. We utilize the concepts of on-average stability and high-order approximate Lipschitz conditions to examine how changes in data distribution and adversarial budget can affect robust generalization gaps. Our derived generalization bounds for both convex and non-convex losses are at least as good as the uniform stability-based counterparts which do not include data distribution information. Furthermore, our findings demonstrate how distribution shifts from data poisoning attacks can impact robust generalization.




Abstract:Dialogue-level dependency parsing has received insufficient attention, especially for Chinese. To this end, we draw on ideas from syntactic dependency and rhetorical structure theory (RST), developing a high-quality human-annotated corpus, which contains 850 dialogues and 199,803 dependencies. Considering that such tasks suffer from high annotation costs, we investigate zero-shot and few-shot scenarios. Based on an existing syntactic treebank, we adopt a signal-based method to transform seen syntactic dependencies into unseen ones between elementary discourse units (EDUs), where the signals are detected by masked language modeling. Besides, we apply single-view and multi-view data selection to access reliable pseudo-labeled instances. Experimental results show the effectiveness of these baselines. Moreover, we discuss several crucial points about our dataset and approach.




Abstract:Theory of Mind (ToM) is the ability to attribute mental states to others, the basis of human cognition. At present, there has been growing interest in the AI with cognitive abilities, for example in healthcare and the motoring industry. Beliefs, desires, and intentions are the early abilities of infants and the foundation of human cognitive ability, as well as for machine with ToM. In this paper, we review recent progress in machine ToM on beliefs, desires, and intentions. And we shall introduce the experiments, datasets and methods of machine ToM on these three aspects, summarize the development of different tasks and datasets in recent years, and compare well-behaved models in aspects of advantages, limitations and applicable conditions, hoping that this study can guide researchers to quickly keep up with latest trend in this field. Unlike other domains with a specific task and resolution framework, machine ToM lacks a unified instruction and a series of standard evaluation tasks, which make it difficult to formally compare the proposed models. We argue that, one method to address this difficulty is now to present a standard assessment criteria and dataset, better a large-scale dataset covered multiple aspects of ToM.




Abstract:Unsupervised pre-training on millions of digital-born or scanned documents has shown promising advances in visual document understanding~(VDU). While various vision-language pre-training objectives are studied in existing solutions, the document textline, as an intrinsic granularity in VDU, has seldom been explored so far. A document textline usually contains words that are spatially and semantically correlated, which can be easily obtained from OCR engines. In this paper, we propose Wukong-Reader, trained with new pre-training objectives to leverage the structural knowledge nested in document textlines. We introduce textline-region contrastive learning to achieve fine-grained alignment between the visual regions and texts of document textlines. Furthermore, masked region modeling and textline-grid matching are also designed to enhance the visual and layout representations of textlines. Experiments show that our Wukong-Reader has superior performance on various VDU tasks such as information extraction. The fine-grained alignment over textlines also empowers Wukong-Reader with promising localization ability.