Abstract:Whether and how language models (LMs) acquire the syntax of natural languages has been widely evaluated under the minimal pair paradigm. However, a lack of wide-coverage benchmarks in languages other than English has constrained systematic investigations into the issue. Addressing it, we first introduce ZhoBLiMP, the most comprehensive benchmark of linguistic minimal pairs for Chinese to date, with 118 paradigms, covering 15 linguistic phenomena. We then train 20 LMs of different sizes (14M to 1.4B) on Chinese corpora of various volumes (100M to 3B tokens) and evaluate them along with 14 off-the-shelf LLMs on ZhoBLiMP. The overall results indicate that Chinese grammar can be mostly learned by models with around 500M parameters, trained on 1B tokens with one epoch, showing limited benefits for further scaling. Most (N=95) linguistic paradigms are of easy or medium difficulty for LMs, while there are still 13 paradigms that remain challenging even for models with up to 32B parameters. In regard to how LMs acquire Chinese grammar, we observe a U-shaped learning pattern in several phenomena, similar to those observed in child language acquisition.
Abstract:LLM self-evaluation relies on the LLM's own ability to estimate response correctness, which can greatly improve its deployment reliability. In this research track, we propose the Chain-of-Embedding (CoE) in the latent space to enable LLMs to perform output-free self-evaluation. CoE consists of all progressive hidden states produced during the inference time, which can be treated as the latent thinking path of LLMs. We find that when LLMs respond correctly and incorrectly, their CoE features differ, these discrepancies assist us in estimating LLM response correctness. Experiments in four diverse domains and seven LLMs fully demonstrate the effectiveness of our method. Meanwhile, its label-free design intent without any training and millisecond-level computational cost ensure real-time feedback in large-scale scenarios. More importantly, we provide interesting insights into LLM response correctness from the perspective of hidden state changes inside LLMs.
Abstract:Achieving consistent high-quality machine translation (MT) across diverse domains remains a significant challenge, primarily due to the limited and imbalanced parallel training data available in various domains. While large language models (LLMs) have demonstrated impressive general understanding and generation abilities, their potential in multi-domain MT is under-explored. We establish a comprehensive benchmark for multi-domain translation, featuring 25 German$\Leftrightarrow$English and 22 Chinese$\Leftrightarrow$English test sets respectively covering 15 domains. Our evaluation of prominent LLMs reveals a discernible performance gap against traditional MT systems, highlighting domain overfitting and catastrophic forgetting issues after fine-tuning on domain-limited corpora. To mitigate this, we propose a domain Chain of Thought (CoT) fine-tuning technique that utilizes the intrinsic multi-domain intelligence of LLMs to improve translation performance. This method inspires the LLM to perceive domain information from the source text, which then serves as a helpful hint to guide the translation process. Despite being trained on a small dataset of four domains, our CoT fine-tune approach achieves notable enhancements in translation accuracy and domain robustness than traditional fine-tuning, as evidenced by an average 1.53 BLEU score increase in over 20 German$\rightarrow$English distinct out-of-domain tests.
Abstract:Mammals can generate autonomous behaviors in various complex environments through the coordination and interaction of activities at different levels of their central nervous system. In this paper, we propose a novel hierarchical learning control framework by mimicking the hierarchical structure of the central nervous system along with their coordination and interaction behaviors. The framework combines the active and passive control systems to improve both the flexibility and reliability of the control system as well as to achieve more diverse autonomous behaviors of robots. Specifically, the framework has a backbone of independent neural network controllers at different levels and takes a three-level dual descending pathway structure, inspired from the functionality of the cerebral cortex, cerebellum, and spinal cord. We comprehensively validated the proposed approach through the simulation as well as the experiment of a hexapod robot in various complex environments, including obstacle crossing and rapid recovery after partial damage. This study reveals the principle that governs the autonomous behavior in the central nervous system and demonstrates the effectiveness of the hierarchical control approach with the salient features of the hierarchical learning control architecture and combination of active and passive control systems.
Abstract:Recognizing unauthorized Unmanned Aerial Vehicles (UAVs) within designated no-fly zones throughout the day and night is of paramount importance, where the unauthorized UAVs pose a substantial threat to both civil and military aviation safety. However, recognizing UAVs day and night with dual-vision cameras is nontrivial, since red-green-blue (RGB) images suffer from a low detection rate under an insufficient light condition, such as on cloudy or stormy days, while black-and-white infrared (IR) images struggle to capture UAVs that overlap with the background at night. In this paper, we propose a new optical flow-assisted graph-pooling residual network (OF-GPRN), which significantly enhances the UAV detection rate in day and night dual visions. The proposed OF-GPRN develops a new optical fusion to remove superfluous backgrounds, which improves RGB/IR imaging clarity. Furthermore, OF-GPRN extends optical fusion by incorporating a graph residual split attention network and a feature pyramid, which refines the perception of UAVs, leading to a higher success rate in UAV detection. A comprehensive performance evaluation is conducted using a benchmark UAV catch dataset. The results indicate that the proposed OF-GPRN elevates the UAV mean average precision (mAP) detection rate to 87.8%, marking a 17.9% advancement compared to the residual graph neural network (ResGCN)-based approach.
Abstract:This report introduces the Qwen2 series, the latest addition to our large language models and large multimodal models. We release a comprehensive suite of foundational and instruction-tuned language models, encompassing a parameter range from 0.5 to 72 billion, featuring dense models and a Mixture-of-Experts model. Qwen2 surpasses most prior open-weight models, including its predecessor Qwen1.5, and exhibits competitive performance relative to proprietary models across diverse benchmarks on language understanding, generation, multilingual proficiency, coding, mathematics, and reasoning. The flagship model, Qwen2-72B, showcases remarkable performance: 84.2 on MMLU, 37.9 on GPQA, 64.6 on HumanEval, 89.5 on GSM8K, and 82.4 on BBH as a base language model. The instruction-tuned variant, Qwen2-72B-Instruct, attains 9.1 on MT-Bench, 48.1 on Arena-Hard, and 35.7 on LiveCodeBench. Moreover, Qwen2 demonstrates robust multilingual capabilities, proficient in approximately 30 languages, spanning English, Chinese, Spanish, French, German, Arabic, Russian, Korean, Japanese, Thai, Vietnamese, and more, underscoring its versatility and global reach. To foster community innovation and accessibility, we have made the Qwen2 model weights openly available on Hugging Face and ModelScope, and the supplementary materials including example code on GitHub. These platforms also include resources for quantization, fine-tuning, and deployment, facilitating a wide range of applications and research endeavors.
Abstract:Neuromorphic imaging is a bio-inspired technique that imitates the human retina to sense variations in a dynamic scene. It responds to pixel-level brightness changes by asynchronous streaming events and boasts microsecond temporal precision over a high dynamic range, yielding blur-free recordings under extreme illumination. Nevertheless, such a modality falls short in spatial resolution and leads to a low level of visual richness and clarity. Pursuing hardware upgrades is expensive and might cause compromised performance due to more burdens on computational requirements. Another option is to harness offline, plug-in-play neuromorphic super-resolution solutions. However, existing ones, which demand substantial sample volumes for lengthy training on massive computing resources, are largely restricted by real data availability owing to the current imperfect high-resolution devices, as well as the randomness and variability of motion. To tackle these challenges, we introduce the first self-supervised neuromorphic super-resolution prototype. It can be self-adaptive to per input source from any low-resolution camera to estimate an optimal, high-resolution counterpart of any scale, without the need of side knowledge and prior training. Evaluated on downstream event-driven tasks, such a simple yet effective method can obtain competitive results against the state-of-the-arts, significantly promoting flexibility but not sacrificing accuracy. It also delivers enhancements for inferior natural images and optical micrographs acquired under non-ideal imaging conditions, breaking through the limitations that are challenging to overcome with traditional frame techniques. In the current landscape where the use of high-resolution cameras for event-based sensing remains an open debate, our solution serves as a cost-efficient and practical alternative, paving the way for more intelligent imaging systems.
Abstract:This paper introduces AnyTrans, an all-encompassing framework for the task-Translate AnyText in the Image (TATI), which includes multilingual text translation and text fusion within images. Our framework leverages the strengths of large-scale models, such as Large Language Models (LLMs) and text-guided diffusion models, to incorporate contextual cues from both textual and visual elements during translation. The few-shot learning capability of LLMs allows for the translation of fragmented texts by considering the overall context. Meanwhile, the advanced inpainting and editing abilities of diffusion models make it possible to fuse translated text seamlessly into the original image while preserving its style and realism. Additionally, our framework can be constructed entirely using open-source models and requires no training, making it highly accessible and easily expandable. To encourage advancement in the TATI task, we have meticulously compiled a test dataset called MTIT6, which consists of multilingual text image translation data from six language pairs.
Abstract:We present our work on developing and training scalable graph foundation models (GFM) using HydraGNN, a multi-headed graph convolutional neural network architecture. HydraGNN expands the boundaries of graph neural network (GNN) in both training scale and data diversity. It abstracts over message passing algorithms, allowing both reproduction of and comparison across algorithmic innovations that define convolution in GNNs. This work discusses a series of optimizations that have allowed scaling up the GFM training to tens of thousands of GPUs on datasets that consist of hundreds of millions of graphs. Our GFMs use multi-task learning (MTL) to simultaneously learn graph-level and node-level properties of atomistic structures, such as the total energy and atomic forces. Using over 150 million atomistic structures for training, we illustrate the performance of our approach along with the lessons learned on two United States Department of Energy (US-DOE) supercomputers, namely the Perlmutter petascale system at the National Energy Research Scientific Computing Center and the Frontier exascale system at Oak Ridge National Laboratory. The HydraGNN architecture enables the GFM to achieve near-linear strong scaling performance using more than 2,000 GPUs on Perlmutter and 16,000 GPUs on Frontier. Hyperparameter optimization (HPO) was performed on over 64,000 GPUs on Frontier to select GFM architectures with high accuracy. Early stopping was applied on each GFM architecture for energy awareness in performing such an extreme-scale task. The training of an ensemble of highest-ranked GFM architectures continued until convergence to establish uncertainty quantification (UQ) capabilities with ensemble learning. Our contribution opens the door for rapidly developing, training, and deploying GFMs using large-scale computational resources to enable AI-accelerated materials discovery and design.
Abstract:Real-world data deviating from the independent and identically distributed (i.i.d.) assumption of in-distribution training data poses security threats to deep networks, thus advancing out-of-distribution (OOD) detection algorithms. Detection methods in generative language models (GLMs) mainly focus on uncertainty estimation and embedding distance measurement, with the latter proven to be most effective in traditional linguistic tasks like summarization and translation. However, another complex generative scenario mathematical reasoning poses significant challenges to embedding-based methods due to its high-density feature of output spaces, but this feature causes larger discrepancies in the embedding shift trajectory between different samples in latent spaces. Hence, we propose a trajectory-based method TV score, which uses trajectory volatility for OOD detection in mathematical reasoning. Experiments show that our method outperforms all traditional algorithms on GLMs under mathematical reasoning scenarios and can be extended to more applications with high-density features in output spaces, such as multiple-choice questions.