Abstract:Large Language Models~(LLMs) have demonstrated capabilities across various applications but face challenges such as hallucination, limited reasoning abilities, and factual inconsistencies, especially when tackling complex, domain-specific tasks like question answering~(QA). While Knowledge Graphs~(KGs) have been shown to help mitigate these issues, research on the integration of LLMs with background KGs remains limited. In particular, user accessibility and the flexibility of the underlying KG have not been thoroughly explored. We introduce AGENTiGraph (Adaptive Generative ENgine for Task-based Interaction and Graphical Representation), a platform for knowledge management through natural language interaction. It integrates knowledge extraction, integration, and real-time visualization. AGENTiGraph employs a multi-agent architecture to dynamically interpret user intents, manage tasks, and integrate new knowledge, ensuring adaptability to evolving user requirements and data contexts. Our approach demonstrates superior performance in knowledge graph interactions, particularly for complex domain-specific tasks. Experimental results on a dataset of 3,500 test cases show AGENTiGraph significantly outperforms state-of-the-art zero-shot baselines, achieving 95.12\% accuracy in task classification and 90.45\% success rate in task execution. User studies corroborate its effectiveness in real-world scenarios. To showcase versatility, we extended AGENTiGraph to legislation and healthcare domains, constructing specialized KGs capable of answering complex queries in legal and medical contexts.
Abstract:In recent years, State Space Models (SSMs) with efficient hardware-aware designs, known as the Mamba deep learning models, have made significant progress in modeling long sequences such as language understanding. Therefore, building efficient and general-purpose visual backbones based on SSMs is a promising direction. Compared to traditional convolutional neural networks (CNNs) and Vision Transformers (ViTs), the performance of Vision Mamba (ViM) methods is not yet fully competitive. To enable SSMs to process image data, ViMs typically flatten 2D images into 1D sequences, inevitably ignoring some 2D local dependencies, thereby weakening the model's ability to interpret spatial relationships from a global perspective. We use Fast Fourier Transform (FFT) to obtain the spectrum of the feature map and add it to the original feature map, enabling ViM to model a unified visual representation in both frequency and spatial domains. The introduction of frequency domain information enables ViM to have a global receptive field during scanning. We propose a novel model called Vim-F, which employs pure Mamba encoders and scans in both the frequency and spatial domains. Moreover, we question the necessity of position embedding in ViM and remove it accordingly in Vim-F, which helps to fully utilize the efficient long-sequence modeling capability of ViM. Finally, we redesign a patch embedding for Vim-F, leveraging a convolutional stem to capture more local correlations, further improving the performance of Vim-F. Code is available at: \url{https://github.com/yws-wxs/Vim-F}.
Abstract:We present Compound Conditioned ControlNet, C3Net, a novel generative neural architecture taking conditions from multiple modalities and synthesizing multimodal contents simultaneously (e.g., image, text, audio). C3Net adapts the ControlNet architecture to jointly train and make inferences on a production-ready diffusion model and its trainable copies. Specifically, C3Net first aligns the conditions from multi-modalities to the same semantic latent space using modality-specific encoders based on contrastive training. Then, it generates multimodal outputs based on the aligned latent space, whose semantic information is combined using a ControlNet-like architecture called Control C3-UNet. Correspondingly, with this system design, our model offers an improved solution for joint-modality generation through learning and explaining multimodal conditions instead of simply taking linear interpolations on the latent space. Meanwhile, as we align conditions to a unified latent space, C3Net only requires one trainable Control C3-UNet to work on multimodal semantic information. Furthermore, our model employs unimodal pretraining on the condition alignment stage, outperforming the non-pretrained alignment even on relatively scarce training data and thus demonstrating high-quality compound condition generation. We contribute the first high-quality tri-modal validation set to validate quantitatively that C3Net outperforms or is on par with first and contemporary state-of-the-art multimodal generation. Our codes and tri-modal dataset will be released.
Abstract:Recommending suitable items to a group of users, commonly referred to as the group recommendation task, is becoming increasingly urgent with the development of group activities. The challenges within the group recommendation task involve aggregating the individual preferences of group members as the group's preferences and facing serious sparsity problems due to the lack of user/group-item interactions. To solve these problems, we propose a novel approach called Dependency Relationships-Enhanced Attentive Group Recommendation (DREAGR) for the recommendation task of occasional groups. Specifically, we introduce the dependency relationship between items as side information to enhance the user/group-item interaction and alleviate the interaction sparsity problem. Then, we propose a Path-Aware Attention Embedding (PAAE) method to model users' preferences on different types of paths. Next, we design a gated fusion mechanism to fuse users' preferences into their comprehensive preferences. Finally, we develop an attention aggregator that aggregates users' preferences as the group's preferences for the group recommendation task. We conducted experiments on two datasets to demonstrate the superiority of DREAGR by comparing it with state-of-the-art group recommender models. The experimental results show that DREAGR outperforms other models, especially HR@N and NDCG@N (N=5, 10), where DREAGR has improved in the range of 3.64% to 7.01% and 2.57% to 3.39% on both datasets, respectively.
Abstract:We present the content deformation field CoDeF as a new type of video representation, which consists of a canonical content field aggregating the static contents in the entire video and a temporal deformation field recording the transformations from the canonical image (i.e., rendered from the canonical content field) to each individual frame along the time axis.Given a target video, these two fields are jointly optimized to reconstruct it through a carefully tailored rendering pipeline.We advisedly introduce some regularizations into the optimization process, urging the canonical content field to inherit semantics (e.g., the object shape) from the video.With such a design, CoDeF naturally supports lifting image algorithms for video processing, in the sense that one can apply an image algorithm to the canonical image and effortlessly propagate the outcomes to the entire video with the aid of the temporal deformation field.We experimentally show that CoDeF is able to lift image-to-image translation to video-to-video translation and lift keypoint detection to keypoint tracking without any training.More importantly, thanks to our lifting strategy that deploys the algorithms on only one image, we achieve superior cross-frame consistency in processed videos compared to existing video-to-video translation approaches, and even manage to track non-rigid objects like water and smog.Project page can be found at https://qiuyu96.github.io/CoDeF/.
Abstract:Federated learning is an approach to collaboratively training machine learning models for multiple parties that prohibit data sharing. One of the challenges in federated learning is non-IID data between clients, as a single model can not fit the data distribution for all clients. Meta-learning, such as Per-FedAvg, is introduced to cope with the challenge. Meta-learning learns shared initial parameters for all clients. Each client employs gradient descent to adapt the initialization to local data distributions quickly to realize model personalization. However, due to non-convex loss function and randomness of sampling update, meta-learning approaches have unstable goals in local adaptation for the same client. This fluctuation in different adaptation directions hinders the convergence in meta-learning. To overcome this challenge, we use the historical local adapted model to restrict the direction of the inner loop and propose an elastic-constrained method. As a result, the current round inner loop keeps historical goals and adapts to better solutions. Experiments show our method boosts meta-learning convergence and improves personalization without additional calculation and communication. Our method achieved SOTA on all metrics in three public datasets.
Abstract:With the continuous improvement of the performance of object detectors via advanced model architectures, imbalance problems in the training process have received more attention. It is a common paradigm in object detection frameworks to perform multi-scale detection. However, each scale is treated equally during training. In this paper, we carefully study the objective imbalance of multi-scale detector training. We argue that the loss in each scale level is neither equally important nor independent. Different from the existing solutions of setting multi-task weights, we dynamically optimize the loss weight of each scale level in the training process. Specifically, we propose an Adaptive Variance Weighting (AVW) to balance multi-scale loss according to the statistical variance. Then we develop a novel Reinforcement Learning Optimization (RLO) to decide the weighting scheme probabilistically during training. The proposed dynamic methods make better utilization of multi-scale training loss without extra computational complexity and learnable parameters for backpropagation. Experiments show that our approaches can consistently boost the performance over various baseline detectors on Pascal VOC and MS COCO benchmark.
Abstract:Feature pyramid network (FPN) has been an effective framework to extract multi-scale features in object detection. However, current FPN-based methods mostly suffer from the intrinsic flaw of channel reduction, which brings about the loss of semantical information. And the miscellaneous fused feature maps may cause serious aliasing effects. In this paper, we present a novel channel enhancement feature pyramid network (CE-FPN) with three simple yet effective modules to alleviate these problems. Specifically, inspired by sub-pixel convolution, we propose a sub-pixel skip fusion method to perform both channel enhancement and upsampling. Instead of the original 1x1 convolution and linear upsampling, it mitigates the information loss due to channel reduction. Then we propose a sub-pixel context enhancement module for extracting more feature representations, which is superior to other context methods due to the utilization of rich channel information by sub-pixel convolution. Furthermore, a channel attention guided module is introduced to optimize the final integrated features on each level, which alleviates the aliasing effect only with a few computational burdens. Our experiments show that CE-FPN achieves competitive performance compared to state-of-the-art FPN-based detectors on MS COCO benchmark.