Abstract:Finetuned large language models (LLMs) have shown remarkable performance in financial tasks, such as sentiment analysis and information retrieval. Due to privacy concerns, finetuning and deploying Financial LLMs (FinLLMs) locally are crucial for institutions. However, finetuning FinLLMs poses challenges including GPU memory constraints and long input sequences. In this paper, we employ quantized low-rank adaptation (QLoRA) to finetune FinLLMs, which leverage low-rank matrix decomposition and quantization techniques to significantly reduce computational requirements while maintaining high model performance. We also employ data and pipeline parallelism to enable local finetuning using cost-effective, widely accessible GPUs. Experiments on financial datasets demonstrate that our method achieves substantial improvements in accuracy, GPU memory usage, and time efficiency, underscoring the potential of lowrank methods for scalable and resource-efficient LLM finetuning.
Abstract:The topic of aspect-based sentiment analysis (ABSA) has been explored for a variety of industries, but it still remains much unexplored in finance. The recent release of data for an open challenge (FiQA) from the companion proceedings of WWW '18 has provided valuable finance-specific annotations. FiQA contains high quality labels, but it still lacks data quantity to apply traditional ABSA deep learning architecture. In this paper, we employ high-level semantic representations and methods of inductive transfer learning for NLP. We experiment with extensions of recently developed domain adaptation methods and target task fine-tuning that significantly improve performance on a small dataset. Our results show an 8.7% improvement in the F1 score for classification and an 11% improvement over the MSE for regression on current state-of-the-art results.