Abstract:Human reaction generation represents a significant research domain for interactive AI, as humans constantly interact with their surroundings. Previous works focus mainly on synthesizing the reactive motion given a human motion sequence. This paradigm limits interaction categories to human-human interactions and ignores emotions that may influence reaction generation. In this work, we propose to generate 3D human reactions from RGB videos, which involves a wider range of interaction categories and naturally provides information about expressions that may reflect the subject's emotions. To cope with this task, we present HERO, a simple yet powerful framework for Human rEaction geneRation from videOs. HERO considers both global and frame-level local representations of the video to extract the interaction intention, and then uses the extracted interaction intention to guide the synthesis of the reaction. Besides, local visual representations are continuously injected into the model to maximize the exploitation of the dynamic properties inherent in videos. Furthermore, the ViMo dataset containing paired Video-Motion data is collected to support the task. In addition to human-human interactions, these video-motion pairs also cover animal-human interactions and scene-human interactions. Extensive experiments demonstrate the superiority of our methodology. The code and dataset will be publicly available at https://jackyu6.github.io/HERO.
Abstract:Understanding egocentric human-object interaction (HOI) is a fundamental aspect of human-centric perception, facilitating applications like AR/VR and embodied AI. For the egocentric HOI, in addition to perceiving semantics e.g., ''what'' interaction is occurring, capturing ''where'' the interaction specifically manifests in 3D space is also crucial, which links the perception and operation. Existing methods primarily leverage observations of HOI to capture interaction regions from an exocentric view. However, incomplete observations of interacting parties in the egocentric view introduce ambiguity between visual observations and interaction contents, impairing their efficacy. From the egocentric view, humans integrate the visual cortex, cerebellum, and brain to internalize their intentions and interaction concepts of objects, allowing for the pre-formulation of interactions and making behaviors even when interaction regions are out of sight. In light of this, we propose harmonizing the visual appearance, head motion, and 3D object to excavate the object interaction concept and subject intention, jointly inferring 3D human contact and object affordance from egocentric videos. To achieve this, we present EgoChoir, which links object structures with interaction contexts inherent in appearance and head motion to reveal object affordance, further utilizing it to model human contact. Additionally, a gradient modulation is employed to adopt appropriate clues for capturing interaction regions across various egocentric scenarios. Moreover, 3D contact and affordance are annotated for egocentric videos collected from Ego-Exo4D and GIMO to support the task. Extensive experiments on them demonstrate the effectiveness and superiority of EgoChoir. Code and data will be open.