Abstract:In the realm of autonomous driving, robust perception under out-of-distribution conditions is paramount for the safe deployment of vehicles. Challenges such as adverse weather, sensor malfunctions, and environmental unpredictability can severely impact the performance of autonomous systems. The 2024 RoboDrive Challenge was crafted to propel the development of driving perception technologies that can withstand and adapt to these real-world variabilities. Focusing on four pivotal tasks -- BEV detection, map segmentation, semantic occupancy prediction, and multi-view depth estimation -- the competition laid down a gauntlet to innovate and enhance system resilience against typical and atypical disturbances. This year's challenge consisted of five distinct tracks and attracted 140 registered teams from 93 institutes across 11 countries, resulting in nearly one thousand submissions evaluated through our servers. The competition culminated in 15 top-performing solutions, which introduced a range of innovative approaches including advanced data augmentation, multi-sensor fusion, self-supervised learning for error correction, and new algorithmic strategies to enhance sensor robustness. These contributions significantly advanced the state of the art, particularly in handling sensor inconsistencies and environmental variability. Participants, through collaborative efforts, pushed the boundaries of current technologies, showcasing their potential in real-world scenarios. Extensive evaluations and analyses provided insights into the effectiveness of these solutions, highlighting key trends and successful strategies for improving the resilience of driving perception systems. This challenge has set a new benchmark in the field, providing a rich repository of techniques expected to guide future research in this field.
Abstract:GNSS are indispensable for various applications, but they are vulnerable to spoofing attacks. The original receiver autonomous integrity monitoring (RAIM) was not designed for securing GNSS. In this context, RAIM was extended with wireless signals, termed signals of opportunity (SOPs), or onboard sensors, typically assumed benign. However, attackers might also manipulate wireless networks, raising the need for a solution that considers untrustworthy SOPs. To address this, we extend RAIM by incorporating all opportunistic information, i.e., measurements from terrestrial infrastructures and onboard sensors, culminating in one function for robust GNSS spoofing detection. The objective is to assess the likelihood of GNSS spoofing by analyzing locations derived from extended RAIM solutions, which include location solutions from GNSS pseudorange subsets and wireless signal subsets of untrusted networks. Our method comprises two pivotal components: subset generation and location fusion. Subsets of ranging information are created and processed through positioning algorithms, producing temporary locations. Onboard sensors provide speed, acceleration, and attitude data, aiding in location filtering based on motion constraints. The filtered locations, modeled with uncertainty, are fused into a composite likelihood function normalized for GNSS spoofing detection. Theoretical assessments of GNSS-only and multi-infrastructure scenarios under uncoordinated and coordinated attacks are conducted. The detection of these attacks is feasible when the number of benign subsets exceeds a specific threshold. A real-world dataset from the Kista area is used for experimental validation. Comparative analysis against baseline methods shows a significant improvement in detection accuracy achieved by our Gaussian Mixture RAIM approach. Moreover, we discuss leveraging RAIM results for plausible location recovery.
Abstract:The complex systems with edge computing require a huge amount of multi-feature data to extract appropriate insights for their decision making, so it is important to find a feasible feature selection method to improve the computational efficiency and save the resource consumption. In this paper, a quantum-based feature selection algorithm for the multi-classification problem, namely, QReliefF, is proposed, which can effectively reduce the complexity of algorithm and improve its computational efficiency. First, all features of each sample are encoded into a quantum state by performing operations CMP and R_y, and then the amplitude estimation is applied to calculate the similarity between any two quantum states (i.e., two samples). According to the similarities, the Grover-Long method is utilized to find the nearest k neighbor samples, and then the weight vector is updated. After a certain number of iterations through the above process, the desired features can be selected with regards to the final weight vector and the threshold {\tau}. Compared with the classical ReliefF algorithm, our algorithm reduces the complexity of similarity calculation from O(MN) to O(M), the complexity of finding the nearest neighbor from O(M) to O(sqrt(M)), and resource consumption from O(MN) to O(MlogN). Meanwhile, compared with the quantum Relief algorithm, our algorithm is superior in finding the nearest neighbor, reducing the complexity from O(M) to O(sqrt(M)). Finally, in order to verify the feasibility of our algorithm, a simulation experiment based on Rigetti with a simple example is performed.
Abstract:Quantum Sobel edge detection (QSED) is a kind of algorithm for image edge detection using quantum mechanism, which can solve the real-time problem encountered by classical algorithms. However, the existing QSED algorithms only consider two- or four-direction Sobel operator, which leads to a certain loss of edge detail information in some high-definition images. In this paper, a novel QSED algorithm based on eight-direction Sobel operator is proposed, which not only reduces the loss of edge information, but also simultaneously calculates eight directions' gradient values of all pixel in a quantum image. In addition, the concrete quantum circuits, which consist of gradient calculation, non-maximum suppression, double threshold detection and edge tracking units, are designed in details. For a 2^n x 2^n image with q gray scale, the complexity of our algorithm can be reduced to O(n^2 + q^2), which is lower than other existing classical or quantum algorithms. And the simulation experiment demonstrates that our algorithm can detect more edge information, especially diagonal edges, than the two- and four-direction QSED algorithms.
Abstract:The moving target segmentation (MTS) aims to segment out moving targets in the video, however, the classical algorithm faces the huge challenge of real-time processing in the current video era. Some scholars have successfully demonstrated the quantum advantages in some video processing tasks, but not concerning moving target segmentation. In this paper, a quantum moving target segmentation algorithm for grayscale video is proposed, which can use quantum mechanism to simultaneously calculate the difference of all pixels in all adjacent frames and then quickly segment out the moving target. In addition, a feasible quantum comparator is designed to distinguish the grayscale values with the threshold. Then several quantum circuit units, including three-frame difference, binarization and AND operation, are designed in detail, and then are combined together to construct the complete quantum circuits for segmenting the moving target. For a quantum video with $2^m$ frames (every frame is a $2^n\times 2^n$ image with $q$ grayscale levels), the complexity of our algorithm can be reduced to O$(n^2 + q)$. Compared with the classic counterpart, it is an exponential speedup, while its complexity is also superior to the existing quantum algorithms. Finally, the experiment is conducted on IBM Q to show the feasibility of our algorithm in the noisy intermediate-scale quantum (NISQ) era.
Abstract:As an emerging field that aims to bridge the gap between human activities and computing systems, human-centered computing (HCC) in cloud, edge, fog has had a huge impact on the artificial intelligence algorithms. The quantum generative adversarial network (QGAN) is considered to be one of the quantum machine learning algorithms with great application prospects, which also should be improved to conform to the human-centered paradigm. The generation process of QGAN is relatively random and the generated model does not conform to the human-centered concept, so it is not quite suitable for real scenarios. In order to solve these problems, a hybrid quantum-classical conditional generative adversarial network (QCGAN) algorithm is proposed, which is a knowledge-driven human-computer interaction computing mode that can be implemented in cloud. The purposes of stabilizing the generation process and realizing the interaction between human and computing process are achieved by inputting artificial conditional information in the generator and discriminator. The generator uses the parameterized quantum circuit with an all-to-all connected topology, which facilitates the tuning of network parameters during the training process. The discriminator uses the classical neural network, which effectively avoids the "input bottleneck" of quantum machine learning. Finally, the BAS training set is selected to conduct experiment on the quantum cloud computing platform. The result shows that the QCGAN algorithm can effectively converge to the Nash equilibrium point after training and perform human-centered classification generation tasks.
Abstract:Traditional quantum system control methods often face different constraints, and are easy to cause both leakage and stochastic control errors under the condition of limited resources. Reinforcement learning has been proved as an efficient way to complete the quantum system control task. To learn a satisfactory control strategy under the condition of limited resources, a quantum system control method based on enhanced reinforcement learning (QSC-ERL) is proposed. The states and actions in reinforcement learning are mapped to quantum states and control operations in quantum systems. By using new enhanced neural networks, reinforcement learning can quickly achieve the maximization of long-term cumulative rewards, and a quantum state can be evolved accurately from an initial state to a target state. According to the number of candidate unitary operations, the three-switch control is used for simulation experiments. Compared with other methods, the QSC-ERL achieves close to 1 fidelity learning control of quantum systems, and takes fewer episodes to quantum state evolution under the condition of limited resources.
Abstract:Due to the large state space of the two-qubit system, and the adoption of ladder reward function in the existing quantum state preparation methods, the convergence speed is slow and it is difficult to prepare the desired target quantum state with high fidelity under limited conditions. To solve the above problems, a difference-driven reinforcement learning (RL) algorithm for quantum state preparation of two-qubit system is proposed by improving the reward function and action selection strategy. Firstly, a model is constructed for the problem of preparing quantum states of a two-qubit system, with restrictions on the type of quantum gates and the time for quantum state evolution. In the preparation process, a weighted differential dynamic reward function is designed to assist the algorithm quickly obtain the maximum expected cumulative reward. Then, an adaptive e-greedy action selection strategy is adopted to achieve a balance between exploration and utilization to a certain extent, thereby improving the fidelity of the final quantum state. The simulation results show that the proposed algorithm can prepare quantum state with high fidelity under limited conditions. Compared with other algorithms, it has different degrees of improvement in convergence speed and fidelity of the final quantum state.
Abstract:The Computed Tomography (CT) for diagnosis of lesions in human internal organs is one of the most fundamental topics in medical imaging. Low-dose CT, which offers reduced radiation exposure, is preferred over standard-dose CT, and therefore its reconstruction approaches have been extensively studied. However, current low-dose CT reconstruction techniques mainly rely on model-based methods or deep-learning-based techniques, which often ignore the coherence and smoothness for sequential CT slices. To address this issue, we propose a novel approach using generative adversarial networks (GANs) with enhanced local coherence. The proposed method can capture the local coherence of adjacent images by optical flow, which yields significant improvements in the precision and stability of the constructed images. We evaluate our proposed method on real datasets and the experimental results suggest that it can outperform existing state-of-the-art reconstruction approaches significantly.
Abstract:In order to solve the problem of non-ideal training sets (i.e., the less-complete or over-complete sets) and implement one-iteration learning, a novel efficient quantum perceptron algorithm based on unitary weights is proposed, where the singular value decomposition of the total weight matrix from the training set is calculated to make the weight matrix to be unitary. The example validation of quantum gates {H, S, T, CNOT, Toffoli, Fredkin} shows that our algorithm can accurately implement arbitrary quantum gates within one iteration. The performance comparison between our algorithm and other quantum perceptron algorithms demonstrates the advantages of our algorithm in terms of applicability, accuracy, and availability. For further validating the applicability of our algorithm, a quantum composite gate which consists of several basic quantum gates is also illustrated.