Abstract:Larger models often outperform smaller ones but come with high computational costs. Cascading offers a potential solution. By default, it uses smaller models and defers only some instances to larger, more powerful models. However, designing effective deferral rules remains a challenge. In this paper, we propose a simple yet effective approach for machine translation, using existing quality estimation (QE) metrics as deferral rules. We show that QE-based deferral allows a cascaded system to match the performance of a larger model while invoking it for a small fraction (30% to 50%) of the examples, significantly reducing computational costs. We validate this approach through both automatic and human evaluation.
Abstract:The computational cost of softmax-based attention in transformers limits their applicability to long-context tasks. Adaptive sparsity, of which $\alpha$-entmax attention is an example, offers a flexible data-dependent alternative, but existing implementations are inefficient and do not leverage the sparsity to obtain runtime and memory gains. In this work, we propose AdaSplash, which combines the efficiency of GPU-optimized algorithms with the sparsity benefits of $\alpha$-entmax. We first introduce a hybrid Halley-bisection algorithm, resulting in a 7-fold reduction in the number of iterations needed to compute the $\alpha$-entmax transformation. Then, we implement custom Triton kernels to efficiently handle adaptive sparsity. Experiments with RoBERTa and ModernBERT for text classification and single-vector retrieval, along with GPT-2 for language modeling, show that our method achieves substantial improvements in runtime and memory efficiency compared to existing $\alpha$-entmax implementations. It approaches -- and in some cases surpasses -- the efficiency of highly optimized softmax implementations like FlashAttention-2, enabling long-context training while maintaining strong task performance.
Abstract:Current video-language models struggle with long-video understanding due to limited context lengths and reliance on sparse frame subsampling, often leading to information loss. This paper introduces $\infty$-Video, which can process arbitrarily long videos through a continuous-time long-term memory (LTM) consolidation mechanism. Our framework augments video Q-formers by allowing them to process unbounded video contexts efficiently and without requiring additional training. Through continuous attention, our approach dynamically allocates higher granularity to the most relevant video segments, forming "sticky" memories that evolve over time. Experiments with Video-LLaMA and VideoChat2 demonstrate improved performance in video question-answering tasks, showcasing the potential of continuous-time LTM mechanisms to enable scalable and training-free comprehension of long videos.
Abstract:Effective communication is fundamental to any interaction, yet challenges arise when participants do not share a common language. Automatic translation systems offer a powerful solution to bridge language barriers in such scenarios, but they introduce errors that can lead to misunderstandings and conversation breakdown. A key issue is that current systems fail to incorporate the rich contextual information necessary to resolve ambiguities and omitted details, resulting in literal, inappropriate, or misaligned translations. In this work, we present a framework to improve large language model-based translation systems by incorporating contextual information in bilingual conversational settings. During training, we leverage context-augmented parallel data, which allows the model to generate translations sensitive to conversational history. During inference, we perform quality-aware decoding with context-aware metrics to select the optimal translation from a pool of candidates. We validate both components of our framework on two task-oriented domains: customer chat and user-assistant interaction. Across both settings, our framework consistently results in better translations than state-of-the-art systems like GPT-4o and TowerInstruct, as measured by multiple automatic translation quality metrics on several language pairs. We also show that the resulting model leverages context in an intended and interpretable way, improving consistency between the conveyed message and the generated translations.
Abstract:Associative memory models, such as Hopfield networks and their modern variants, have garnered renewed interest due to advancements in memory capacity and connections with self-attention in transformers. In this work, we introduce a unified framework-Hopfield-Fenchel-Young networks-which generalizes these models to a broader family of energy functions. Our energies are formulated as the difference between two Fenchel-Young losses: one, parameterized by a generalized entropy, defines the Hopfield scoring mechanism, while the other applies a post-transformation to the Hopfield output. By utilizing Tsallis and norm entropies, we derive end-to-end differentiable update rules that enable sparse transformations, uncovering new connections between loss margins, sparsity, and exact retrieval of single memory patterns. We further extend this framework to structured Hopfield networks using the SparseMAP transformation, allowing the retrieval of pattern associations rather than a single pattern. Our framework unifies and extends traditional and modern Hopfield networks and provides an energy minimization perspective for widely used post-transformations like $\ell_2$-normalization and layer normalization-all through suitable choices of Fenchel-Young losses and by using convex analysis as a building block. Finally, we validate our Hopfield-Fenchel-Young networks on diverse memory recall tasks, including free and sequential recall. Experiments on simulated data, image retrieval, multiple instance learning, and text rationalization demonstrate the effectiveness of our approach.
Abstract:Reinforcement learning (RL) has been proven to be an effective and robust method for training neural machine translation systems, especially when paired with powerful reward models that accurately assess translation quality. However, most research has focused on RL methods that use sentence-level feedback, which leads to inefficient learning signals due to the reward sparsity problem -- the model receives a single score for the entire sentence. To address this, we introduce a novel approach that leverages fine-grained token-level reward mechanisms with RL methods. We use xCOMET, a state-of-the-art quality estimation system as our token-level reward model. xCOMET provides detailed feedback by predicting fine-grained error spans and their severity given source-translation pairs. We conduct experiments on small and large translation datasets to compare the impact of sentence-level versus fine-grained reward signals on translation quality. Our results show that training with token-level rewards improves translation quality across language pairs over baselines according to automatic and human evaluation. Furthermore, token-level reward optimization also improves training stability, evidenced by a steady increase in mean rewards over training epochs.
Abstract:Large language models (LLMs) have achieved state-of-the-art performance in machine translation (MT) and demonstrated the ability to leverage in-context learning through few-shot examples. However, the mechanisms by which LLMs use different parts of the input context remain largely unexplored. In this work, we provide a comprehensive analysis of context utilization in MT, studying how LLMs use various context parts, such as few-shot examples and the source text, when generating translations. We highlight several key findings: (1) the source part of few-shot examples appears to contribute more than its corresponding targets, irrespective of translation direction; (2) finetuning LLMs with parallel data alters the contribution patterns of different context parts; and (3) there is a positional bias where earlier few-shot examples have higher contributions to the translated sequence. Finally, we demonstrate that inspecting anomalous context contributions can potentially uncover pathological translations, such as hallucinations. Our findings shed light on the internal workings of LLM-based MT which go beyond those known for standard encoder-decoder MT models.
Abstract:The automatic assessment of translation quality has recently become crucial for many stages of the translation pipeline, from data curation to training and decoding. However, while quality estimation metrics have been optimized to align with human judgments, no attention has been given to these metrics' potential biases, particularly in reinforcing visibility and usability for some demographic groups over others. This paper is the first to investigate gender bias in quality estimation (QE) metrics and its downstream impact on machine translation (MT). We focus on out-of-English translations where the target language uses grammatical gender. We ask: (RQ1) Do contemporary QE metrics exhibit gender bias? (RQ2) Can the use of contextual information mitigate this bias? (RQ3) How does QE influence gender bias in MT outputs? Experiments with state-of-the-art QE metrics across multiple domains, datasets, and languages reveal significant bias. Masculine-inflected translations score higher than feminine-inflected ones, and gender-neutral translations are penalized. Moreover, context-aware QE metrics reduce errors for masculine-inflected references but fail to address feminine referents, exacerbating gender disparities. Additionally, we show that QE metrics can perpetuate gender bias in MT systems when used in quality-aware decoding. Our findings highlight the need to address gender bias in QE metrics to ensure equitable and unbiased MT systems.
Abstract:The quality of open-weight LLMs has seen significant improvement, yet they remain predominantly focused on English. In this paper, we introduce the EuroLLM project, aimed at developing a suite of open-weight multilingual LLMs capable of understanding and generating text in all official European Union languages, as well as several additional relevant languages. We outline the progress made to date, detailing our data collection and filtering process, the development of scaling laws, the creation of our multilingual tokenizer, and the data mix and modeling configurations. Additionally, we release our initial models: EuroLLM-1.7B and EuroLLM-1.7B-Instruct and report their performance on multilingual general benchmarks and machine translation.
Abstract:To ensure large language models (LLMs) are used safely, one must reduce their propensity to hallucinate or to generate unacceptable answers. A simple and often used strategy is to first let the LLM generate multiple hypotheses and then employ a reranker to choose the best one. In this paper, we draw a parallel between this strategy and the use of redundancy to decrease the error rate in noisy communication channels. We conceptualize the generator as a sender transmitting multiple descriptions of a message through parallel noisy channels. The receiver decodes the message by ranking the (potentially corrupted) descriptions and selecting the one found to be most reliable. We provide conditions under which this protocol is asymptotically error-free (i.e., yields an acceptable answer almost surely) even in scenarios where the reranker is imperfect (governed by Mallows or Zipf-Mandelbrot models) and the channel distributions are statistically dependent. We use our framework to obtain reranking laws which we validate empirically on two real-world tasks using LLMs: text-to-code generation with DeepSeek-Coder 7B and machine translation of medical data with TowerInstruct 13B.