Université Paris-Saclay, CentraleSupélec, MICS
Abstract:Neural metrics for machine translation (MT) evaluation have become increasingly prominent due to their superior correlation with human judgments compared to traditional lexical metrics. Researchers have therefore utilized neural metrics through quality-informed decoding strategies, achieving better results than likelihood-based methods. With the rise of Large Language Models (LLMs), preference-based alignment techniques have gained attention for their potential to enhance translation quality by optimizing model weights directly on preferences induced by quality estimators. This study focuses on Contrastive Preference Optimization (CPO) and conducts extensive experiments to evaluate the impact of preference-based alignment on translation quality. Our findings indicate that while CPO consistently outperforms Supervised Fine-Tuning (SFT) on high-quality data with regard to the alignment metric, it may lead to instability across downstream evaluation metrics, particularly between neural and lexical ones. Additionally, we demonstrate that relying solely on the base model for generating candidate translations achieves performance comparable to using multiple external systems, while ensuring better consistency across downstream metrics.
Abstract:Documents are visually rich structures that convey information through text, as well as tables, figures, page layouts, or fonts. While modern document retrieval systems exhibit strong performance on query-to-text matching, they struggle to exploit visual cues efficiently, hindering their performance on practical document retrieval applications such as Retrieval Augmented Generation. To benchmark current systems on visually rich document retrieval, we introduce the Visual Document Retrieval Benchmark ViDoRe, composed of various page-level retrieving tasks spanning multiple domains, languages, and settings. The inherent shortcomings of modern systems motivate the introduction of a new retrieval model architecture, ColPali, which leverages the document understanding capabilities of recent Vision Language Models to produce high-quality contextualized embeddings solely from images of document pages. Combined with a late interaction matching mechanism, ColPali largely outperforms modern document retrieval pipelines while being drastically faster and end-to-end trainable.
Abstract:In the trend of hybrid Artificial Intelligence (AI) techniques, Physic Informed Machine Learning has seen a growing interest. It operates mainly by imposing a data, learning or inductive bias with simulation data, Partial Differential Equations or equivariance and invariance properties. While these models have shown great success on tasks involving one physical domain such as fluid dynamics, existing methods still struggle on tasks with complex multi-physical and multi-domain phenomena. To address this challenge, we propose to leverage Bond Graphs, a multi-physics modeling approach together with Graph Neural Network. We thus propose Neural Bond Graph Encoder (NBgE), a model agnostic physical-informed encoder tailored for multi-physics systems. It provides an unified framework for any multi-physics informed AI with a graph encoder readable for any deep learning model. Our experiments on two challenging multi-domain physical systems - a Direct Current Motor and the Respiratory system - demonstrate the effectiveness of our approach on a multi-variate time series forecasting task.
Abstract:AI Foundation models are gaining traction in various applications, including medical fields like radiology. However, medical foundation models are often tested on limited tasks, leaving their generalisability and biases unexplored. We present RayDINO, a large visual encoder trained by self-supervision on 873k chest X-rays. We compare RayDINO to previous state-of-the-art models across nine radiology tasks, from classification and dense segmentation to text generation, and provide an in depth analysis of population, age and sex biases of our model. Our findings suggest that self-supervision allows patient-centric AI proving useful in clinical workflows and interpreting X-rays holistically. With RayDINO and small task-specific adapters, we reach state-of-the-art results and improve generalization to unseen populations while mitigating bias, illustrating the true promise of foundation models: versatility and robustness.
Abstract:Neurosymbolic artificial intelligence is a growing field of research aiming to combine neural network learning capabilities with the reasoning abilities of symbolic systems. Informed multi-label classification is a sub-field of neurosymbolic AI which studies how to leverage prior knowledge to improve neural classification systems. A well known family of neurosymbolic techniques for informed classification use probabilistic reasoning to integrate this knowledge during learning, inference or both. Therefore, the asymptotic complexity of probabilistic reasoning is of cardinal importance to assess the scalability of such techniques. However, this topic is rarely tackled in the neurosymbolic literature, which can lead to a poor understanding of the limits of probabilistic neurosymbolic techniques. In this paper, we introduce a formalism for informed supervised classification tasks and techniques. We then build upon this formalism to define three abstract neurosymbolic techniques based on probabilistic reasoning. Finally, we show computational complexity results on several representation languages for prior knowledge commonly found in the neurosymbolic literature.
Abstract:Class-incremental learning deals with sequential data streams composed of batches of classes. Various algorithms have been proposed to address the challenging case where samples from past classes cannot be stored. However, selecting an appropriate algorithm for a user-defined setting is an open problem, as the relative performance of these algorithms depends on the incremental settings. To solve this problem, we introduce an algorithm recommendation method that simulates the future data stream. Given an initial set of classes, it leverages generative models to simulate future classes from the same visual domain. We evaluate recent algorithms on the simulated stream and recommend the one which performs best in the user-defined incremental setting. We illustrate the effectiveness of our method on three large datasets using six algorithms and six incremental settings. Our method outperforms competitive baselines, and performance is close to that of an oracle choosing the best algorithm in each setting. This work contributes to facilitate the practical deployment of incremental learning.
Abstract:Neural Information Retrieval (NIR) has significantly improved upon heuristic-based IR systems. Yet, failures remain frequent, the models used often being unable to retrieve documents relevant to the user's query. We address this challenge by proposing a lightweight abstention mechanism tailored for real-world constraints, with particular emphasis placed on the reranking phase. We introduce a protocol for evaluating abstention strategies in a black-box scenario, demonstrating their efficacy, and propose a simple yet effective data-driven mechanism. We provide open-source code for experiment replication and abstention implementation, fostering wider adoption and application in diverse contexts.
Abstract:Neurosymbolic AI is a growing field of research aiming to combine neural networks learning capabilities with the reasoning abilities of symbolic systems. This hybridization can take many shapes. In this paper, we propose a new formalism for supervised multi-label classification with propositional background knowledge. We introduce a new neurosymbolic technique called semantic conditioning at inference, which only constrains the system during inference while leaving the training unaffected. We discuss its theoritical and practical advantages over two other popular neurosymbolic techniques: semantic conditioning and semantic regularization. We develop a new multi-scale methodology to evaluate how the benefits of a neurosymbolic technique evolve with the scale of the network. We then evaluate experimentally and compare the benefits of all three techniques across model scales on several datasets. Our results demonstrate that semantic conditioning at inference can be used to build more accurate neural-based systems with fewer resources while guaranteeing the semantic consistency of outputs.
Abstract:Deploying large language models (LLMs) of several billion parameters can be impractical in most industrial use cases due to constraints such as cost, latency limitations, and hardware accessibility. Knowledge distillation (KD) offers a solution by compressing knowledge from resource-intensive large models to smaller ones. Various strategies exist, some relying on the text generated by the teacher model and optionally utilizing his logits to enhance learning. However, these methods based on logits often require both teacher and student models to share the same tokenizer, limiting their applicability across different LLM families. In this paper, we introduce Universal Logit Distillation (ULD) loss, grounded in optimal transport, to address this limitation. Our experimental results demonstrate the effectiveness of ULD loss in enabling distillation across models with different architectures and tokenizers, paving the way to a more widespread use of distillation techniques.
Abstract:We introduce CroissantLLM, a 1.3B language model pretrained on a set of 3T English and French tokens, to bring to the research and industrial community a high-performance, fully open-sourced bilingual model that runs swiftly on consumer-grade local hardware. To that end, we pioneer the approach of training an intrinsically bilingual model with a 1:1 English-to-French pretraining data ratio, a custom tokenizer, and bilingual finetuning datasets. We release the training dataset, notably containing a French split with manually curated, high-quality, and varied data sources. To assess performance outside of English, we craft a novel benchmark, FrenchBench, consisting of an array of classification and generation tasks, covering various orthogonal aspects of model performance in the French Language. Additionally, rooted in transparency and to foster further Large Language Model research, we release codebases, and dozens of checkpoints across various model sizes, training data distributions, and training steps, as well as fine-tuned Chat models, and strong translation models. We evaluate our model through the FMTI framework, and validate 81 % of the transparency criteria, far beyond the scores of even most open initiatives. This work enriches the NLP landscape, breaking away from previous English-centric work in order to strengthen our understanding of multilinguality in language models.