Abstract:Reasoning-enabled large language models (LLMs) have recently demonstrated impressive performance in complex logical and mathematical tasks, yet their effectiveness in evaluating natural language generation remains unexplored. This study systematically compares reasoning-based LLMs (DeepSeek-R1 and OpenAI o3) with their non-reasoning counterparts across machine translation (MT) and text summarization (TS) evaluation tasks. We evaluate eight models across three architectural categories, including state-of-the-art reasoning models, their distilled variants (ranging from 8B to 70B parameters), and equivalent conventional, non-reasoning LLMs. Our experiments on WMT23 and SummEval benchmarks reveal that the benefits of reasoning capabilities are highly model and task-dependent: while OpenAI o3-mini models show consistent performance improvements with increased reasoning intensity, DeepSeek-R1 underperforms compared to its non-reasoning variant, with exception to certain aspects of TS evaluation. Correlation analysis demonstrates that increased reasoning token usage positively correlates with evaluation quality in o3-mini models. Furthermore, our results show that distillation of reasoning capabilities maintains reasonable performance in medium-sized models (32B) but degrades substantially in smaller variants (8B). This work provides the first comprehensive assessment of reasoning LLMs for NLG evaluation and offers insights into their practical use.
Abstract:Evaluating the quality of generated text automatically remains a significant challenge. Conventional reference-based metrics have been shown to exhibit relatively weak correlation with human evaluations. Recent research advocates the use of large language models (LLMs) as source-based metrics for natural language generation (NLG) assessment. While promising, LLM-based metrics, particularly those using smaller models, still fall short in aligning with human judgments. In this work, we introduce ContrastScore, a contrastive evaluation metric designed to enable higher-quality, less biased, and more efficient assessment of generated text. We evaluate ContrastScore on two NLG tasks: machine translation and summarization. Experimental results show that ContrastScore consistently achieves stronger correlation with human judgments than both single-model and ensemble-based baselines. Notably, ContrastScore based on Qwen 3B and 0.5B even outperforms Qwen 7B, despite having only half as many parameters, demonstrating its efficiency. Furthermore, it effectively mitigates common evaluation biases such as length and likelihood preferences, resulting in more robust automatic evaluation.
Abstract:With the rise of generative AI, synthesizing figures from text captions becomes a compelling application. However, achieving high geometric precision and editability requires representing figures as graphics programs in languages like TikZ, and aligned training data (i.e., graphics programs with captions) remains scarce. Meanwhile, large amounts of unaligned graphics programs and captioned raster images are more readily available. We reconcile these disparate data sources by presenting TikZero, which decouples graphics program generation from text understanding by using image representations as an intermediary bridge. It enables independent training on graphics programs and captioned images and allows for zero-shot text-guided graphics program synthesis during inference. We show that our method substantially outperforms baselines that can only operate with caption-aligned graphics programs. Furthermore, when leveraging caption-aligned graphics programs as a complementary training signal, TikZero matches or exceeds the performance of much larger models, including commercial systems like GPT-4o. Our code, datasets, and select models are publicly available.
Abstract:Recent advancements in Large Language Model (LLM)-based Natural Language Generation evaluation have largely focused on single-example prompting, resulting in significant token overhead and computational inefficiencies. In this work, we introduce BatchGEMBA-MQM, a framework that integrates batched prompting with the GEMBA-MQM metric for machine translation evaluation. Our approach aggregates multiple translation examples into a single prompt, reducing token usage by 2-4 times (depending on the batch size) relative to single-example prompting. Furthermore, we propose a batching-aware prompt compression model that achieves an additional token reduction of 13-15% on average while also showing ability to help mitigate batching-induced quality degradation. Evaluations across several LLMs (GPT-4o, GPT-4o-mini, Mistral Small, Phi4, and CommandR7B) and varying batch sizes reveal that while batching generally negatively affects quality (but sometimes not substantially), prompt compression does not degrade further, and in some cases, recovers quality loss. For instance, GPT-4o retains over 90% of its baseline performance at a batch size of 4 when compression is applied, compared to a 44.6% drop without compression. We plan to release our code and trained models at https://github.com/NL2G/batchgemba to support future research in this domain.
Abstract:With the advent of large multimodal language models, science is now at a threshold of an AI-based technological transformation. Recently, a plethora of new AI models and tools has been proposed, promising to empower researchers and academics worldwide to conduct their research more effectively and efficiently. This includes all aspects of the research cycle, especially (1) searching for relevant literature; (2) generating research ideas and conducting experimentation; generating (3) text-based and (4) multimodal content (e.g., scientific figures and diagrams); and (5) AI-based automatic peer review. In this survey, we provide an in-depth overview over these exciting recent developments, which promise to fundamentally alter the scientific research process for good. Our survey covers the five aspects outlined above, indicating relevant datasets, methods and results (including evaluation) as well as limitations and scope for future research. Ethical concerns regarding shortcomings of these tools and potential for misuse (fake science, plagiarism, harms to research integrity) take a particularly prominent place in our discussion. We hope that our survey will not only become a reference guide for newcomers to the field but also a catalyst for new AI-based initiatives in the area of "AI4Science".
Abstract:Evaluating the quality of machine-generated natural language content is a challenging task in Natural Language Processing (NLP). Recently, large language models (LLMs) like GPT-4 have been employed for this purpose, but they are computationally expensive due to the extensive token usage required by complex evaluation prompts. In this paper, we propose a prompt optimization approach that uses a smaller, fine-tuned language model to compress input data for evaluation prompt, thus reducing token usage and computational cost when using larger LLMs for downstream evaluation. Our method involves a two-stage fine-tuning process: supervised fine-tuning followed by preference optimization to refine the model's outputs based on human preferences. We focus on Machine Translation (MT) evaluation and utilize the GEMBA-MQM metric as a starting point. Our results show a $2.37\times$ reduction in token usage without any loss in evaluation quality. This work makes state-of-the-art LLM-based metrics like GEMBA-MQM more cost-effective and efficient, enhancing their accessibility for broader use.
Abstract:Natural language explanations (NLEs) are commonly used to provide plausible free-text explanations of a model's reasoning about its predictions. However, recent work has questioned the faithfulness of NLEs, as they may not accurately reflect the model's internal reasoning process regarding its predicted answer. In contrast, highlight explanations -- input fragments identified as critical for the model's predictions -- exhibit measurable faithfulness, which has been incrementally improved through existing research. Building on this foundation, we propose G-Tex, a Graph-Guided Textual Explanation Generation framework designed to enhance the faithfulness of NLEs by leveraging highlight explanations. Specifically, highlight explanations are extracted as highly faithful cues representing the model's reasoning and are subsequently encoded through a graph neural network layer, which explicitly guides the NLE generation process. This alignment ensures that the generated explanations closely reflect the model's underlying reasoning. Experiments on T5 and BART using three reasoning datasets show that G-Tex improves NLE faithfulness by up to 17.59% compared to baseline methods. Additionally, G-Tex generates NLEs with greater semantic and lexical similarity to human-written ones. Human evaluations show that G-Tex can decrease redundant content and enhance the overall quality of NLEs. As our work introduces a novel method for explicitly guiding NLE generation to improve faithfulness, we hope it will serve as a stepping stone for addressing additional criteria for NLE and generated text overall.
Abstract:Multimodal large language models (LLMs) have demonstrated impressive capabilities in generating high-quality images from textual instructions. However, their performance in generating scientific images--a critical application for accelerating scientific progress--remains underexplored. In this work, we address this gap by introducing ScImage, a benchmark designed to evaluate the multimodal capabilities of LLMs in generating scientific images from textual descriptions. ScImage assesses three key dimensions of understanding: spatial, numeric, and attribute comprehension, as well as their combinations, focusing on the relationships between scientific objects (e.g., squares, circles). We evaluate five models, GPT-4o, Llama, AutomaTikZ, Dall-E, and StableDiffusion, using two modes of output generation: code-based outputs (Python, TikZ) and direct raster image generation. Additionally, we examine four different input languages: English, German, Farsi, and Chinese. Our evaluation, conducted with 11 scientists across three criteria (correctness, relevance, and scientific accuracy), reveals that while GPT-4o produces outputs of decent quality for simpler prompts involving individual dimensions such as spatial, numeric, or attribute understanding in isolation, all models face challenges in this task, especially for more complex prompts.
Abstract:Recent research has focused on literary machine translation (MT) as a new challenge in MT. However, the evaluation of literary MT remains an open problem. We contribute to this ongoing discussion by introducing LITEVAL-CORPUS, a paragraph-level parallel corpus comprising multiple verified human translations and outputs from 9 MT systems, which totals over 2k paragraphs and includes 13k annotated sentences across four language pairs, costing 4.5k Euro. This corpus enables us to (i) examine the consistency and adequacy of multiple annotation schemes, (ii) compare evaluations by students and professionals, and (iii) assess the effectiveness of LLM-based metrics. We find that Multidimensional Quality Metrics (MQM), as the de facto standard in non-literary human MT evaluation, is inadequate for literary translation: While Best-Worst Scaling (BWS) with students and Scalar Quality Metric (SQM) with professional translators prefer human translations at rates of ~82% and ~94%, respectively, MQM with student annotators prefers human professional translations over the translations of the best-performing LLMs in only ~42% of cases. While automatic metrics generally show a moderate correlation with human MQM and SQM, they struggle to accurately identify human translations, with rates of at most ~20%. Our overall evaluation indicates that human professional translations consistently outperform LLM translations, where even the most recent LLMs tend to produce more literal and less diverse translations compared to human translations. However, newer LLMs such as GPT-4o perform substantially better than older ones.
Abstract:Despite substantial progress of large language models (LLMs) for automatic poetry generation, the generated poetry lacks diversity while the training process differs greatly from human learning. Under the rationale that the learning process of the poetry generation systems should be more human-like and their output more diverse and novel, we introduce a framework based on social learning where we emphasize non-cooperative interactions besides cooperative interactions to encourage diversity. Our experiments are the first attempt at LLM-based multi-agent systems in non-cooperative environments for poetry generation employing both TRAINING-BASED agents (GPT-2) and PROMPTING-BASED agents (GPT-3 and GPT-4). Our evaluation based on 96k generated poems shows that our framework benefits the poetry generation process for TRAINING-BASED agents resulting in 1) a 3.0-3.7 percentage point (pp) increase in diversity and a 5.6-11.3 pp increase in novelty according to distinct and novel n-grams. The generated poetry from TRAINING-BASED agents also exhibits group divergence in terms of lexicons, styles and semantics. PROMPTING-BASED agents in our framework also benefit from non-cooperative environments and a more diverse ensemble of models with non-homogeneous agents has the potential to further enhance diversity, with an increase of 7.0-17.5 pp according to our experiments. However, PROMPTING-BASED agents show a decrease in lexical diversity over time and do not exhibit the group-based divergence intended in the social network. Our paper argues for a paradigm shift in creative tasks such as automatic poetry generation to include social learning processes (via LLM-based agent modeling) similar to human interaction.