Abstract:Unsupervised parsing, also known as grammar induction, aims to infer syntactic structure from raw text. Recently, binary representation has exhibited remarkable information-preserving capabilities at both lexicon and syntax levels. In this paper, we explore the possibility of leveraging this capability to deduce parsing trees from raw text, relying solely on the implicitly induced grammars within models. To achieve this, we upgrade the bit-level CKY from zero-order to first-order to encode the lexicon and syntax in a unified binary representation space, switch training from supervised to unsupervised under the contrastive hashing framework, and introduce a novel loss function to impose stronger yet balanced alignment signals. Our model shows competitive performance on various datasets, therefore, we claim that our method is effective and efficient enough to acquire high-quality parsing trees from pre-trained language models at a low cost.
Abstract:Recently, binary representation has been proposed as a novel representation that lies between continuous and discrete representations. It exhibits considerable information-preserving capability when being used to replace continuous input vectors. In this paper, we investigate the feasibility of further introducing it to the output side, aiming to allow models to output binary labels instead. To preserve the structural information on the output side along with label information, we extend the previous contrastive hashing method as structured contrastive hashing. More specifically, we upgrade CKY from label-level to bit-level, define a new similarity function with span marginal probabilities, and introduce a novel contrastive loss function with a carefully designed instance selection strategy. Our model achieves competitive performance on various structured prediction tasks, and demonstrates that binary representation can be considered a novel representation that further bridges the gap between the continuous nature of deep learning and the discrete intrinsic property of natural languages.
Abstract:Minimum Bayes risk (MBR) decoding achieved state-of-the-art translation performance by using COMET, a neural metric that has a high correlation with human evaluation. However, MBR decoding requires quadratic time since it computes the expected score between a translation hypothesis and all reference translations. We propose centroid-based MBR (CBMBR) decoding to improve the speed of MBR decoding. Our method clusters the reference translations in the feature space, and then calculates the score using the centroids of each cluster. The experimental results show that our CBMBR not only improved the decoding speed of the expected score calculation 6.9 times, but also outperformed vanilla MBR decoding in translation quality by up to 0.5 COMET in the WMT'22 En$\leftrightarrow$Ja, En$\leftrightarrow$De, En$\leftrightarrow$Zh, and WMT'23 En$\leftrightarrow$Ja translation tasks.
Abstract:Representation learning is the foundation of natural language processing (NLP). This work presents new methods to employ visual information as assistant signals to general NLP tasks. For each sentence, we first retrieve a flexible number of images either from a light topic-image lookup table extracted over the existing sentence-image pairs or a shared cross-modal embedding space that is pre-trained on out-of-shelf text-image pairs. Then, the text and images are encoded by a Transformer encoder and convolutional neural network, respectively. The two sequences of representations are further fused by an attention layer for the interaction of the two modalities. In this study, the retrieval process is controllable and flexible. The universal visual representation overcomes the lack of large-scale bilingual sentence-image pairs. Our method can be easily applied to text-only tasks without manually annotated multimodal parallel corpora. We apply the proposed method to a wide range of natural language generation and understanding tasks, including neural machine translation, natural language inference, and semantic similarity. Experimental results show that our method is generally effective for different tasks and languages. Analysis indicates that the visual signals enrich textual representations of content words, provide fine-grained grounding information about the relationship between concepts and events, and potentially conduce to disambiguation.
Abstract:Discriminative pre-trained language models (PLMs) learn to predict original texts from intentionally corrupted ones. Taking the former text as positive and the latter as negative samples, the PLM can be trained effectively for contextualized representation. However, the training of such a type of PLMs highly relies on the quality of the automatically constructed samples. Existing PLMs simply treat all corrupted texts as equal negative without any examination, which actually lets the resulting model inevitably suffer from the false negative issue where training is carried out on pseudo-negative data and leads to less efficiency and less robustness in the resulting PLMs. In this work, on the basis of defining the false negative issue in discriminative PLMs that has been ignored for a long time, we design enhanced pre-training methods to counteract false negative predictions and encourage pre-training language models on true negatives by correcting the harmful gradient updates subject to false negative predictions. Experimental results on GLUE and SQuAD benchmarks show that our counter-false-negative pre-training methods indeed bring about better performance together with stronger robustness.
Abstract:Conversational machine reading (CMR) requires machines to communicate with humans through multi-turn interactions between two salient dialogue states of decision making and question generation processes. In open CMR settings, as the more realistic scenario, the retrieved background knowledge would be noisy, which results in severe challenges in the information transmission. Existing studies commonly train independent or pipeline systems for the two subtasks. However, those methods are trivial by using hard-label decisions to activate question generation, which eventually hinders the model performance. In this work, we propose an effective gating strategy by smoothing the two dialogue states in only one decoder and bridge decision making and question generation to provide a richer dialogue state reference. Experiments on the OR-ShARC dataset show the effectiveness of our method, which achieves new state-of-the-art results.
Abstract:Though the pre-trained contextualized language model (PrLM) has made a significant impact on NLP, training PrLMs in languages other than English can be impractical for two reasons: other languages often lack corpora sufficient for training powerful PrLMs, and because of the commonalities among human languages, computationally expensive PrLM training for different languages is somewhat redundant. In this work, building upon the recent works connecting cross-lingual model transferring and neural machine translation, we thus propose a novel cross-lingual model transferring framework for PrLMs: TreLM. To handle the symbol order and sequence length differences between languages, we propose an intermediate ``TRILayer" structure that learns from these differences and creates a better transfer in our primary translation direction, as well as a new cross-lingual language modeling objective for transfer training. Additionally, we showcase an embedding aligning that adversarially adapts a PrLM's non-contextualized embedding space and the TRILayer structure to learn a text transformation network across languages, which addresses the vocabulary difference between languages. Experiments on both language understanding and structure parsing tasks show the proposed framework significantly outperforms language models trained from scratch with limited data in both performance and efficiency. Moreover, despite an insignificant performance loss compared to pre-training from scratch in resource-rich scenarios, our cross-lingual model transferring framework is significantly more economical.
Abstract:Morphological analysis (MA) and lexical normalization (LN) are both important tasks for Japanese user-generated text (UGT). To evaluate and compare different MA/LN systems, we have constructed a publicly available Japanese UGT corpus. Our corpus comprises 929 sentences annotated with morphological and normalization information, along with category information we classified for frequent UGT-specific phenomena. Experiments on the corpus demonstrated the low performance of existing MA/LN methods for non-general words and non-standard forms, indicating that the corpus would be a challenging benchmark for further research on UGT.
Abstract:Text encoding is one of the most important steps in Natural Language Processing (NLP). It has been done well by the self-attention mechanism in the current state-of-the-art Transformer encoder, which has brought about significant improvements in the performance of many NLP tasks. Though the Transformer encoder may effectively capture general information in its resulting representations, the backbone information, meaning the gist of the input text, is not specifically focused on. In this paper, we propose explicit and implicit text compression approaches to enhance the Transformer encoding and evaluate models using this approach on several typical downstream tasks that rely on the encoding heavily. Our explicit text compression approaches use dedicated models to compress text, while our implicit text compression approach simply adds an additional module to the main model to handle text compression. We propose three ways of integration, namely backbone source-side fusion, target-side fusion, and both-side fusion, to integrate the backbone information into Transformer-based models for various downstream tasks. Our evaluation on benchmark datasets shows that the proposed explicit and implicit text compression approaches improve results in comparison to strong baselines. We therefore conclude, when comparing the encodings to the baseline models, text compression helps the encoders to learn better language representations.
Abstract:Word representation is a fundamental component in neural language understanding models. Recently, pre-trained language models (PrLMs) offer a new performant method of contextualized word representations by leveraging the sequence-level context for modeling. Although the PrLMs generally give more accurate contextualized word representations than non-contextualized models do, they are still subject to a sequence of text contexts without diverse hints for word representation from multimodality. This paper thus proposes a visual representation method to explicitly enhance conventional word embedding with multiple-aspect senses from visual guidance. In detail, we build a small-scale word-image dictionary from a multimodal seed dataset where each word corresponds to diverse related images. The texts and paired images are encoded in parallel, followed by an attention layer to integrate the multimodal representations. We show that the method substantially improves the accuracy of disambiguation. Experiments on 12 natural language understanding and machine translation tasks further verify the effectiveness and the generalization capability of the proposed approach.