Abstract:Automatic evaluation in grammatical error correction (GEC) is crucial for selecting the best-performing systems. Currently, reference-based metrics are a popular choice, which basically measure the similarity between hypothesis and reference sentences. However, similarity measures based on embeddings, such as BERTScore, are often ineffective, since many words in the source sentences remain unchanged in both the hypothesis and the reference. This study focuses on edits specifically designed for GEC, i.e., ERRANT, and computes similarity measured over the edits from the source sentence. To this end, we propose edit vector, a representation for an edit, and introduce a new metric, UOT-ERRANT, which transports these edit vectors from hypothesis to reference using unbalanced optimal transport. Experiments with SEEDA meta-evaluation show that UOT-ERRANT improves evaluation performance, particularly in the +Fluency domain where many edits occur. Moreover, our method is highly interpretable because the transport plan can be interpreted as a soft edit alignment, making UOT-ERRANT a useful metric for both system ranking and analyzing GEC systems. Our code is available from https://github.com/gotutiyan/uot-errant.
Abstract:Recently, we have often observed hallucinated citations or references that do not correspond to any existing work in papers under review, preprints, or published papers. Such hallucinated citations pose a serious concern to scientific reliability. When they appear in accepted papers, they may also negatively affect the credibility of conferences. In this study, we refer to hallucinated citations as "HalluCitation" and systematically investigate their prevalence and impact. We analyze all papers published at ACL, NAACL, and EMNLP in 2024 and 2025, including main conference, Findings, and workshop papers. Our analysis reveals that nearly 300 papers contain at least one HalluCitation, most of which were published in 2025. Notably, half of these papers were identified at EMNLP 2025, the most recent conference, indicating that this issue is rapidly increasing. Moreover, more than 100 such papers were accepted as main conference and Findings papers at EMNLP 2025, affecting the credibility.




Abstract:Strongly human-correlated evaluation metrics serve as an essential compass for the development and improvement of generation models and must be highly reliable and robust. Recent embedding-based neural text evaluation metrics, such as COMET for translation tasks, are widely used in both research and development fields. However, there is no guarantee that they yield reliable evaluation results due to the black-box nature of neural networks. To raise concerns about the reliability and safety of such metrics, we propose a method for finding a single adversarial text in the discrete space that is consistently evaluated as high-quality, regardless of the test cases, to identify the vulnerabilities in evaluation metrics. The single hub text found with our method achieved 79.1 COMET% and 67.8 COMET% in the WMT'24 English-to-Japanese (En--Ja) and English-to-German (En--De) translation tasks, respectively, outperforming translations generated individually for each source sentence by using M2M100, a general translation model. Furthermore, we also confirmed that the hub text found with our method generalizes across multiple language pairs such as Ja--En and De--En.
Abstract:Non-English dialogue datasets are scarce, and models are often trained or evaluated on translations of English-language dialogues, an approach which can introduce artifacts that reduce their naturalness and cultural appropriateness. This work proposes Dialogue Act Script (DAS), a structured framework for encoding, localizing, and generating multilingual dialogues from abstract intent representations. Rather than translating dialogue utterances directly, DAS enables the generation of new dialogues in the target language that are culturally and contextually appropriate. By using structured dialogue act representations, DAS supports flexible localization across languages, mitigating translationese and enabling more fluent, naturalistic conversations. Human evaluations across Italian, German, and Chinese show that DAS-generated dialogues consistently outperform those produced by both machine and human translators on measures of cultural relevance, coherence, and situational appropriateness.
Abstract:In generative commonsense reasoning tasks such as CommonGen, generative large language models (LLMs) compose sentences that include all given concepts. However, when focusing on instruction-following capabilities, if a prompt specifies a concept order, LLMs must generate sentences that adhere to the specified order. To address this, we propose Ordered CommonGen, a benchmark designed to evaluate the compositional generalization and instruction-following abilities of LLMs. This benchmark measures ordered coverage to assess whether concepts are generated in the specified order, enabling a simultaneous evaluation of both abilities. We conducted a comprehensive analysis using 36 LLMs and found that, while LLMs generally understand the intent of instructions, biases toward specific concept order patterns often lead to low-diversity outputs or identical results even when the concept order is altered. Moreover, even the most instruction-compliant LLM achieved only about 75% ordered coverage, highlighting the need for improvements in both instruction-following and compositional generalization capabilities.
Abstract:We introduce gec-metrics, a library for using and developing grammatical error correction (GEC) evaluation metrics through a unified interface. Our library enables fair system comparisons by ensuring that everyone conducts evaluations using a consistent implementation. Moreover, it is designed with a strong focus on API usage, making it highly extensible. It also includes meta-evaluation functionalities and provides analysis and visualization scripts, contributing to developing GEC evaluation metrics. Our code is released under the MIT license and is also distributed as an installable package. The video is available on YouTube.
Abstract:Large-scale Vision Language Models (LVLMs) are increasingly being applied to a wide range of real-world multimodal applications, involving complex visual and linguistic reasoning. As these models become more integrated into practical use, they are expected to handle complex aspects of human interaction. Among these, color perception is a fundamental yet highly variable aspect of visual understanding. It differs across individuals due to biological factors such as Color Vision Deficiencies (CVDs), as well as differences in culture and language. Despite its importance, perceptual diversity has received limited attention. In our study, we evaluate LVLMs' ability to account for individual level perceptual variation using the Ishihara Test, a widely used method for detecting CVDs. Our results show that LVLMs can explain CVDs in natural language, but they cannot simulate how people with CVDs perceive color in image based tasks. These findings highlight the need for multimodal systems that can account for color perceptual diversity and support broader discussions on perceptual inclusiveness and fairness in multimodal AI.




Abstract:Generating images from prompts containing specific entities requires models to retain as much entity-specific knowledge as possible. However, fully memorizing such knowledge is impractical due to the vast number of entities and their continuous emergence. To address this, we propose Text-based Intelligent Generation with Entity prompt Refinement (TextTIGER), which augments knowledge on entities included in the prompts and then summarizes the augmented descriptions using Large Language Models (LLMs) to mitigate performance degradation from longer inputs. To evaluate our method, we introduce WiT-Cub (WiT with Captions and Uncomplicated Background-explanations), a dataset comprising captions, images, and an entity list. Experiments on four image generation models and five LLMs show that TextTIGER improves image generation performance in standard metrics (IS, FID, and CLIPScore) compared to caption-only prompts. Additionally, multiple annotators' evaluation confirms that the summarized descriptions are more informative, validating LLMs' ability to generate concise yet rich descriptions. These findings demonstrate that refining prompts with augmented and summarized entity-related descriptions enhances image generation capabilities. The code and dataset will be available upon acceptance.



Abstract:One of the goals of automatic evaluation metrics in grammatical error correction (GEC) is to rank GEC systems such that it matches human preferences. However, current automatic evaluations are based on procedures that diverge from human evaluation. Specifically, human evaluation derives rankings by aggregating sentence-level relative evaluation results, e.g., pairwise comparisons, using a rating algorithm, whereas automatic evaluation averages sentence-level absolute scores to obtain corpus-level scores, which are then sorted to determine rankings. In this study, we propose an aggregation method for existing automatic evaluation metrics which aligns with human evaluation methods to bridge this gap. We conducted experiments using various metrics, including edit-based metrics, $n$-gram based metrics, and sentence-level metrics, and show that resolving the gap improves results for the most of metrics on the SEEDA benchmark. We also found that even BERT-based metrics sometimes outperform the metrics of GPT-4. We publish our unified implementation of the metrics and meta-evaluations.




Abstract:Vowels are primarily characterized by tongue position. Humans have discovered these features of vowel articulation through their own experience and explicit objective observation such as using MRI. With this knowledge and our experience, we can explain and understand the relationship between tongue positions and vowels, and this knowledge is helpful for language learners to learn pronunciation. Since language models (LMs) are trained on a large amount of data that includes linguistic and medical fields, our preliminary studies indicate that an LM is able to explain the pronunciation mechanisms of vowels. However, it is unclear whether multi-modal LMs, such as vision LMs, align textual information with visual information. One question arises: do LMs associate real tongue positions with vowel articulation? In this study, we created video and image datasets from the existing real-time MRI dataset and investigated whether LMs can understand vowel articulation based on tongue positions using vision-based information. Our findings suggest that LMs exhibit potential for understanding vowels and tongue positions when reference examples are provided while they have difficulties without them. Our code for dataset building is available on GitHub.