Abstract:Text generation commonly relies on greedy and beam decoding that limit the search space and degrade output quality. Minimum Bayes Risk (MBR) decoding can mitigate this problem by utilizing automatic evaluation metrics and model-generated pseudo-references. Previous studies have conducted empirical analyses to reveal the improvement by MBR decoding, and reported various observations. However, despite these observations, the theoretical relationship between them remains uncertain. To address this, we present a novel theoretical interpretation of MBR decoding from the perspective of bias-diversity decomposition. We decompose errors in the estimated quality of generated hypotheses in MBR decoding into two key factors: bias, which reflects the closeness between utility functions and human evaluations, and diversity, which represents the variation in the estimated quality of utility functions. Our theoretical analysis reveals the difficulty in simultaneously improving both bias and diversity, and highlights the effectiveness of increasing diversity to enhance MBR decoding performance. This analysis verifies the alignment between our theoretical insights and the empirical results reported in previous work. Furthermore, to support our theoretical findings, we propose a new metric, pseudo-bias, which approximates the bias term using gold references. We also introduce a new MBR approach, Metric-augmented MBR (MAMBR), which increases diversity by adjusting the behavior of utility functions without altering the pseudo-references. Experimental results across multiple NLP tasks show that the decomposed terms in the bias-diversity decomposition correlate well with performance, and that MAMBR improves text generation quality by modifying utility function behavior. Our code will be available at https://github.com/naist-nlp/mbr-bias-diversity.
Abstract:As the performance of Large-scale Vision Language Models (LVLMs) improves, they are increasingly capable of responding in multiple languages, and there is an expectation that the demand for explanations generated by LVLMs will grow. However, pre-training of Vision Encoder and the integrated training of LLMs with Vision Encoder are mainly conducted using English training data, leaving it uncertain whether LVLMs can completely handle their potential when generating explanations in languages other than English. In addition, multilingual QA benchmarks that create datasets using machine translation have cultural differences and biases, remaining issues for use as evaluation tasks. To address these challenges, this study created an extended dataset in multiple languages without relying on machine translation. This dataset that takes into account nuances and country-specific phrases was then used to evaluate the generation explanation abilities of LVLMs. Furthermore, this study examined whether Instruction-Tuning in resource-rich English improves performance in other languages. Our findings indicate that LVLMs perform worse in languages other than English compared to English. In addition, it was observed that LVLMs struggle to effectively manage the knowledge learned from English data.
Abstract:The extreme multi-label classification~(XMC) task involves learning a classifier that can predict from a large label set the most relevant subset of labels for a data instance. While deep neural networks~(DNNs) have demonstrated remarkable success in XMC problems, the task is still challenging because it must deal with a large number of output labels, which make the DNN training computationally expensive. This paper addresses the issue by exploring the use of random circular vectors, where each vector component is represented as a complex amplitude. In our framework, we can develop an output layer and loss function of DNNs for XMC by representing the final output layer as a fully connected layer that directly predicts a low-dimensional circular vector encoding a set of labels for a data instance. We conducted experiments on synthetic datasets to verify that circular vectors have better label encoding capacity and retrieval ability than normal real-valued vectors. Then, we conducted experiments on actual XMC datasets and found that these appealing properties of circular vectors contribute to significant improvements in task performance compared with a previous model using random real-valued vectors, while reducing the size of the output layers by up to 99%.
Abstract:Knowledge Graphs (KGs) are fundamental resources in knowledge-intensive tasks in NLP. Due to the limitation of manually creating KGs, KG Completion (KGC) has an important role in automatically completing KGs by scoring their links with KG Embedding (KGE). To handle many entities in training, KGE relies on Negative Sampling (NS) loss that can reduce the computational cost by sampling. Since the appearance frequencies for each link are at most one in KGs, sparsity is an essential and inevitable problem. The NS loss is no exception. As a solution, the NS loss in KGE relies on smoothing methods like Self-Adversarial Negative Sampling (SANS) and subsampling. However, it is uncertain what kind of smoothing method is suitable for this purpose due to the lack of theoretical understanding. This paper provides theoretical interpretations of the smoothing methods for the NS loss in KGE and induces a new NS loss, Triplet Adaptive Negative Sampling (TANS), that can cover the characteristics of the conventional smoothing methods. Experimental results of TransE, DistMult, ComplEx, RotatE, HAKE, and HousE on FB15k-237, WN18RR, and YAGO3-10 datasets and their sparser subsets show the soundness of our interpretation and performance improvement by our TANS.
Abstract:Large-scale vision-language models (LVLMs) output text from images and instructions, demonstrating advanced capabilities in text generation and comprehension. However, it has not been clarified to what extent LVLMs understand the knowledge necessary for explaining images, the complex relationships between various pieces of knowledge, and how they integrate these understandings into their explanations. To address this issue, we propose a new task: the artwork explanation generation task, along with its evaluation dataset and metric for quantitatively assessing the understanding and utilization of knowledge about artworks. This task is apt for image description based on the premise that LVLMs are expected to have pre-existing knowledge of artworks, which are often subjects of wide recognition and documented information. It consists of two parts: generating explanations from both images and titles of artworks, and generating explanations using only images, thus evaluating the LVLMs' language-based and vision-based knowledge. Alongside, we release a training dataset for LVLMs to learn explanations that incorporate knowledge about artworks. Our findings indicate that LVLMs not only struggle with integrating language and visual information but also exhibit a more pronounced limitation in acquiring knowledge from images alone. The datasets (ExpArt=Explain Artworks) are available at https://huggingface.co/datasets/naist-nlp/ExpArt.
Abstract:Large-scale vision language models (LVLMs) are language models that are capable of processing images and text inputs by a single model. This paper explores the use of LVLMs to generate review texts for images. The ability of LVLMs to review images is not fully understood, highlighting the need for a methodical evaluation of their review abilities. Unlike image captions, review texts can be written from various perspectives such as image composition and exposure. This diversity of review perspectives makes it difficult to uniquely determine a single correct review for an image. To address this challenge, we introduce an evaluation method based on rank correlation analysis, in which review texts are ranked by humans and LVLMs, then, measures the correlation between these rankings. We further validate this approach by creating a benchmark dataset aimed at assessing the image review ability of recent LVLMs. Our experiments with the dataset reveal that LVLMs, particularly those with proven superiority in other evaluative contexts, excel at distinguishing between high-quality and substandard image reviews.
Abstract:Knowledge graphs (KGs) consist of links that describe relationships between entities. Due to the difficulty of manually enumerating all relationships between entities, automatically completing them is essential for KGs. Knowledge Graph Completion (KGC) is a task that infers unseen relationships between entities in a KG. Traditional embedding-based KGC methods, such as RESCAL, TransE, DistMult, ComplEx, RotatE, HAKE, HousE, etc., infer missing links using only the knowledge from training data. In contrast, the recent Pre-trained Language Model (PLM)-based KGC utilizes knowledge obtained during pre-training. Therefore, PLM-based KGC can estimate missing links between entities by reusing memorized knowledge from pre-training without inference. This approach is problematic because building KGC models aims to infer unseen links between entities. However, conventional evaluations in KGC do not consider inference and memorization abilities separately. Thus, a PLM-based KGC method, which achieves high performance in current KGC evaluations, may be ineffective in practical applications. To address this issue, we analyze whether PLM-based KGC methods make inferences or merely access memorized knowledge. For this purpose, we propose a method for constructing synthetic datasets specified in this analysis and conclude that PLMs acquire the inference abilities required for KGC through pre-training, even though the performance improvements mostly come from textual information of entities and relations.
Abstract:Subsampling is effective in Knowledge Graph Embedding (KGE) for reducing overfitting caused by the sparsity in Knowledge Graph (KG) datasets. However, current subsampling approaches consider only frequencies of queries that consist of entities and their relations. Thus, the existing subsampling potentially underestimates the appearance probabilities of infrequent queries even if the frequencies of their entities or relations are high. To address this problem, we propose Model-based Subsampling (MBS) and Mixed Subsampling (MIX) to estimate their appearance probabilities through predictions of KGE models. Evaluation results on datasets FB15k-237, WN18RR, and YAGO3-10 showed that our proposed subsampling methods actually improved the KG completion performances for popular KGE models, RotatE, TransE, HAKE, ComplEx, and DistMult.
Abstract:Recently, in the field of recommendation systems, linear regression (autoencoder) models have been investigated as a way to learn item similarity. In this paper, we show a connection between a linear autoencoder model and ZCA whitening for recommendation data. In particular, we show that the dual form solution of a linear autoencoder model actually has ZCA whitening effects on feature vectors of items, while items are considered as input features in the primal problem of the autoencoder/regression model. We also show the correctness of applying a linear autoencoder to low-dimensional item vectors obtained using embedding methods such as Item2vec to estimate item-item similarities. Our experiments provide preliminary results indicating the effectiveness of whitening low-dimensional item embeddings.
Abstract:Wikipedia has high-quality articles on a variety of topics and has been used in diverse research areas. In this study, a method is presented for using Wikipedia's editor information to build recommender systems in various domains that outperform content-based systems.