Vision-Language Models (VLMs) occasionally generate outputs that contradict input images, constraining their reliability in real-world applications. While visual prompting is reported to suppress hallucinations by augmenting prompts with relevant area inside an image, the effectiveness in terms of the area remains uncertain. This study analyzes success and failure cases of Attention-driven visual prompting in object hallucination, revealing that preserving background context is crucial for mitigating object hallucination.