Abstract:Text generation commonly relies on greedy and beam decoding that limit the search space and degrade output quality. Minimum Bayes Risk (MBR) decoding can mitigate this problem by utilizing automatic evaluation metrics and model-generated pseudo-references. Previous studies have conducted empirical analyses to reveal the improvement by MBR decoding, and reported various observations. However, despite these observations, the theoretical relationship between them remains uncertain. To address this, we present a novel theoretical interpretation of MBR decoding from the perspective of bias-diversity decomposition. We decompose errors in the estimated quality of generated hypotheses in MBR decoding into two key factors: bias, which reflects the closeness between utility functions and human evaluations, and diversity, which represents the variation in the estimated quality of utility functions. Our theoretical analysis reveals the difficulty in simultaneously improving both bias and diversity, and highlights the effectiveness of increasing diversity to enhance MBR decoding performance. This analysis verifies the alignment between our theoretical insights and the empirical results reported in previous work. Furthermore, to support our theoretical findings, we propose a new metric, pseudo-bias, which approximates the bias term using gold references. We also introduce a new MBR approach, Metric-augmented MBR (MAMBR), which increases diversity by adjusting the behavior of utility functions without altering the pseudo-references. Experimental results across multiple NLP tasks show that the decomposed terms in the bias-diversity decomposition correlate well with performance, and that MAMBR improves text generation quality by modifying utility function behavior. Our code will be available at https://github.com/naist-nlp/mbr-bias-diversity.
Abstract:A large part of human communication relies on nonverbal cues such as facial expressions, eye contact, and body language. Unlike language or sign language, such nonverbal communication lacks formal rules, requiring complex reasoning based on commonsense understanding. Enabling current Video Large Language Models (VideoLLMs) to accurately interpret body language is a crucial challenge, as human unconscious actions can easily cause the model to misinterpret their intent. To address this, we propose a dataset, BQA, a body language question answering dataset, to validate whether the model can correctly interpret emotions from short clips of body language comprising 26 emotion labels of videos of body language. We evaluated various VideoLLMs on BQA and revealed that understanding body language is challenging, and our analyses of the wrong answers by VideoLLMs show that certain VideoLLMs made significantly biased answers depending on the age group and ethnicity of the individuals in the video. The dataset is available.
Abstract:Multilingual neural machine translation models support fine-tuning hundreds of languages simultaneously. However, fine-tuning on full parameters solely is inefficient potentially leading to negative interactions among languages. In this work, we demonstrate that the fine-tuning for a language occurs in its intrinsic language-specific subspace with a tiny fraction of entire parameters. Thus, we propose language-specific LoRA to isolate intrinsic language-specific subspaces. Furthermore, we propose architecture learning techniques and introduce a gradual pruning schedule during fine-tuning to exhaustively explore the optimal setting and the minimal intrinsic subspaces for each language, resulting in a lightweight yet effective fine-tuning procedure. The experimental results on a 12-language subset and a 30-language subset of FLORES-101 show that our methods not only outperform full-parameter fine-tuning up to 2.25 spBLEU scores but also reduce trainable parameters to $0.4\%$ for high and medium-resource languages and $1.6\%$ for low-resource ones.
Abstract:As the performance of Large-scale Vision Language Models (LVLMs) improves, they are increasingly capable of responding in multiple languages, and there is an expectation that the demand for explanations generated by LVLMs will grow. However, pre-training of Vision Encoder and the integrated training of LLMs with Vision Encoder are mainly conducted using English training data, leaving it uncertain whether LVLMs can completely handle their potential when generating explanations in languages other than English. In addition, multilingual QA benchmarks that create datasets using machine translation have cultural differences and biases, remaining issues for use as evaluation tasks. To address these challenges, this study created an extended dataset in multiple languages without relying on machine translation. This dataset that takes into account nuances and country-specific phrases was then used to evaluate the generation explanation abilities of LVLMs. Furthermore, this study examined whether Instruction-Tuning in resource-rich English improves performance in other languages. Our findings indicate that LVLMs perform worse in languages other than English compared to English. In addition, it was observed that LVLMs struggle to effectively manage the knowledge learned from English data.
Abstract:The natural language understanding (NLU) performance of large language models (LLMs) has been evaluated across various tasks and datasets. The existing evaluation methods, however, do not take into account the variance in scores due to differences in prompts, which leads to unfair evaluation and comparison of NLU performance. Moreover, evaluation designed for specific prompts is inappropriate for instruction tuning, which aims to perform well with any prompt. It is therefore necessary to find a way to measure NLU performance in a fair manner, considering score variance between different instruction templates. In this study, we provide English and Japanese cross-lingual datasets for evaluating the NLU performance of LLMs, which include multiple instruction templates for fair evaluation of each task, along with regular expressions to constrain the output format. Furthermore, we propose the Sharpe score as an evaluation metric that takes into account the variance in scores between templates. Comprehensive analysis of English and Japanese LLMs reveals that the high variance among templates has a significant impact on the fair evaluation of LLMs.
Abstract:The grammatical knowledge of language models (LMs) is often measured using a benchmark of linguistic minimal pairs, where LMs are presented with a pair of acceptable and unacceptable sentences and required to judge which is acceptable. The existing dominant approach, however, naively calculates and compares the probabilities of paired sentences using LMs. Additionally, large language models (LLMs) have yet to be thoroughly examined in this field. We thus investigate how to make the most of LLMs' grammatical knowledge to comprehensively evaluate it. Through extensive experiments of nine judgment methods in English and Chinese, we demonstrate that a probability readout method, in-template LP, and a prompting-based method, Yes/No probability computing, achieve particularly high performance, surpassing the conventional approach. Our analysis reveals their different strengths, e.g., Yes/No probability computing is robust against token-length bias, suggesting that they harness different aspects of LLMs' grammatical knowledge. Consequently, we recommend using diverse judgment methods to evaluate LLMs comprehensively.
Abstract:Minimum Bayes risk (MBR) decoding is a decision rule of text generation tasks that outperforms conventional maximum a posterior (MAP) decoding using beam search by selecting high-quality outputs based on a utility function rather than those with high-probability. Typically, it finds the most suitable hypothesis from the set of hypotheses under the sampled pseudo-references. mbrs is a library of MBR decoding, which can flexibly combine various metrics, alternative expectation estimations, and algorithmic variants. It is designed with a focus on speed measurement and calling count of code blocks, transparency, reproducibility, and extensibility, which are essential for researchers and developers. We published our mbrs as an MIT-licensed open-source project, and the code is available on GitHub. GitHub: https://github.com/naist-nlp/mbrs
Abstract:Identifying risky driving behavior in real-world situations is essential for the safety of both drivers and pedestrians. However, integrating natural language models in this field remains relatively untapped. To address this, we created a novel multi-modal instruction tuning dataset and driver coaching inference system. Our primary use case is dashcam-based coaching for commercial drivers. The North American Dashcam Market is expected to register a CAGR of 15.4 percent from 2022 to 2027. Our dataset enables language models to learn visual instructions across various risky driving scenarios, emphasizing detailed reasoning crucial for effective driver coaching and managerial comprehension. Our model is trained on road-facing and driver-facing RGB camera footage, capturing the comprehensive scope of driving behavior in vehicles equipped with dashcams.
Abstract:The extreme multi-label classification~(XMC) task involves learning a classifier that can predict from a large label set the most relevant subset of labels for a data instance. While deep neural networks~(DNNs) have demonstrated remarkable success in XMC problems, the task is still challenging because it must deal with a large number of output labels, which make the DNN training computationally expensive. This paper addresses the issue by exploring the use of random circular vectors, where each vector component is represented as a complex amplitude. In our framework, we can develop an output layer and loss function of DNNs for XMC by representing the final output layer as a fully connected layer that directly predicts a low-dimensional circular vector encoding a set of labels for a data instance. We conducted experiments on synthetic datasets to verify that circular vectors have better label encoding capacity and retrieval ability than normal real-valued vectors. Then, we conducted experiments on actual XMC datasets and found that these appealing properties of circular vectors contribute to significant improvements in task performance compared with a previous model using random real-valued vectors, while reducing the size of the output layers by up to 99%.
Abstract:Knowledge Graphs (KGs) are fundamental resources in knowledge-intensive tasks in NLP. Due to the limitation of manually creating KGs, KG Completion (KGC) has an important role in automatically completing KGs by scoring their links with KG Embedding (KGE). To handle many entities in training, KGE relies on Negative Sampling (NS) loss that can reduce the computational cost by sampling. Since the appearance frequencies for each link are at most one in KGs, sparsity is an essential and inevitable problem. The NS loss is no exception. As a solution, the NS loss in KGE relies on smoothing methods like Self-Adversarial Negative Sampling (SANS) and subsampling. However, it is uncertain what kind of smoothing method is suitable for this purpose due to the lack of theoretical understanding. This paper provides theoretical interpretations of the smoothing methods for the NS loss in KGE and induces a new NS loss, Triplet Adaptive Negative Sampling (TANS), that can cover the characteristics of the conventional smoothing methods. Experimental results of TransE, DistMult, ComplEx, RotatE, HAKE, and HousE on FB15k-237, WN18RR, and YAGO3-10 datasets and their sparser subsets show the soundness of our interpretation and performance improvement by our TANS.