Abstract:The advancement of text generation models has granted us the capability to produce coherent and convincing text on demand. Yet, in real-life circumstances, individuals do not continuously generate text or voice their opinions. For instance, consumers pen product reviews after weighing the merits and demerits of a product, and professional analysts issue reports following significant news releases. In essence, opinion expression is typically prompted by particular reasons or signals. Despite long-standing developments in opinion mining, the appropriate timing for expressing an opinion remains largely unexplored. To address this deficit, our study introduces an innovative task - the identification of news-triggered opinion expressing timing. We ground this task in the actions of professional stock analysts and develop a novel dataset for investigation. Our approach is decision-focused, leveraging text generation models to steer the classification model, thus enhancing overall performance. Our experimental findings demonstrate that the text generated by our model contributes fresh insights from various angles, effectively aiding in identifying the optimal timing for opinion expression.
Abstract:Question answering (QA) has been a long-standing focus in the NLP field, predominantly addressing reading comprehension and common sense QA. However, scenarios involving the preparation of answers to probable questions during professional oral presentations remain underexplored. In this paper, we pioneer the examination of this crucial yet overlooked topic by utilizing real-world QA conversation transcripts between company managers and professional analysts. We explore the proposed task using three causal knowledge graphs (KGs) and three large language models (LLMs). This work provides foundational insights into the application of LLMs in professional QA scenarios, highlighting the importance of causal KGs and perspective-taking in generating effective responses.
Abstract:This paper investigates the role of expert-designed hint in enhancing sentiment analysis on financial social media posts. We explore the capability of large language models (LLMs) to empathize with writer perspectives and analyze sentiments. Our findings reveal that expert-designed hint, i.e., pointing out the importance of numbers, significantly improve performances across various LLMs, particularly in cases requiring perspective-taking skills. Further analysis on tweets containing different types of numerical data demonstrates that the inclusion of expert-designed hint leads to notable improvements in sentiment analysis performance, especially for tweets with monetary-related numbers. Our findings contribute to the ongoing discussion on the applicability of Theory of Mind in NLP and open new avenues for improving sentiment analysis in financial domains through the strategic use of expert knowledge.
Abstract:In the era of rapid Internet and social media platform development, individuals readily share their viewpoints online. The overwhelming quantity of these posts renders comprehensive analysis impractical. This necessitates an efficient recommendation system to filter and present significant, relevant opinions. Our research introduces a dual-pronged argument mining technique to improve recommendation system effectiveness, considering both professional and amateur investor perspectives. Our first strategy involves using the discrepancy between target and closing prices as an opinion indicator. The second strategy applies argument mining principles to score investors' opinions, subsequently ranking them by these scores. Experimental results confirm the effectiveness of our approach, demonstrating its ability to identify opinions with higher profit potential. Beyond profitability, our research extends to risk analysis, examining the relationship between recommended opinions and investor behaviors. This offers a holistic view of potential outcomes following the adoption of these recommended opinions.
Abstract:In the post-Turing era, evaluating large language models (LLMs) involves assessing generated text based on readers' reactions rather than merely its indistinguishability from human-produced content. This paper explores how LLM-generated text impacts readers' decisions, focusing on both amateur and expert audiences. Our findings indicate that GPT-4 can generate persuasive analyses affecting the decisions of both amateurs and professionals. Furthermore, we evaluate the generated text from the aspects of grammar, convincingness, logical coherence, and usefulness. The results highlight a high correlation between real-world evaluation through audience reactions and the current multi-dimensional evaluators commonly used for generative models. Overall, this paper shows the potential and risk of using generated text to sway human decisions and also points out a new direction for evaluating generated text, i.e., leveraging the reactions and decisions of readers. We release our dataset to assist future research.
Abstract:Thinking about the future is one of the important activities that people do in daily life. Futurists also pay a lot of effort into figuring out possible scenarios for the future. We argue that the exploration of this direction is still in an early stage in the NLP research. To this end, we propose three argument generation tasks in the financial application scenario. Our experimental results show these tasks are still big challenges for representative generation models. Based on our empirical results, we further point out several unresolved issues and challenges in this research direction.
Abstract:Large language models (LLMs) have been applied to a wide range of data-to-text generation tasks, including tables, graphs, and time-series numerical data-to-text settings. While research on generating prompts for structured data such as tables and graphs is gaining momentum, in-depth investigations into prompting for time-series numerical data are lacking. Therefore, this study explores various input representations, including sequences of tokens and structured formats such as HTML, LaTeX, and Python-style codes. In our experiments, we focus on the task of Market Comment Generation, which involves taking a numerical sequence of stock prices as input and generating a corresponding market comment. Contrary to our expectations, the results show that prompts resembling programming languages yield better outcomes, whereas those similar to natural languages and longer formats, such as HTML and LaTeX, are less effective. Our findings offer insights into creating effective prompts for tasks that generate text from numerical sequences.
Abstract:In this paper, we propose methods for discovering semantic differences in words appearing in two corpora based on the norms of contextualized word vectors. The key idea is that the coverage of meanings is reflected in the norm of its mean word vector. The proposed methods do not require the assumptions concerning words and corpora for comparison that the previous methods do. All they require are to compute the mean vector of contextualized word vectors and its norm for each word type. Nevertheless, they are (i) robust for the skew in corpus size; (ii) capable of detecting semantic differences in infrequent words; and (iii) effective in pinpointing word instances that have a meaning missing in one of the two corpora for comparison. We show these advantages for native and non-native English corpora and also for historical corpora.
Abstract:Making our research results positively impact on society and environment is one of the goals our community has been pursuing recently. Although financial technology (FinTech) is one of the popular application fields, we notice that there is no discussion on how NLP can help in FinTech for the social good. When mentioning FinTech for social good, people are talking about financial inclusion and green finance. However, the role of NLP in these directions only gets limited discussions. To fill this gap, this paper shares our idea of how we can use NLP in FinTech for social good. We hope readers can rethink the relationship between finance and NLP based on our sharing, and further join us in improving the financial literacy of individual investors and improving the supports for impact investment.
Abstract:Existing automatic story evaluation methods place a premium on story lexical level coherence, deviating from human preference. We go beyond this limitation by considering a novel \textbf{Story} \textbf{E}valuation method that mimics human preference when judging a story, namely \textbf{StoryER}, which consists of three sub-tasks: \textbf{R}anking, \textbf{R}ating and \textbf{R}easoning. Given either a machine-generated or a human-written story, StoryER requires the machine to output 1) a preference score that corresponds to human preference, 2) specific ratings and their corresponding confidences and 3) comments for various aspects (e.g., opening, character-shaping). To support these tasks, we introduce a well-annotated dataset comprising (i) 100k ranked story pairs; and (ii) a set of 46k ratings and comments on various aspects of the story. We finetune Longformer-Encoder-Decoder (LED) on the collected dataset, with the encoder responsible for preference score and aspect prediction and the decoder for comment generation. Our comprehensive experiments result in a competitive benchmark for each task, showing the high correlation to human preference. In addition, we have witnessed the joint learning of the preference scores, the aspect ratings, and the comments brings gain in each single task. Our dataset and benchmarks are publicly available to advance the research of story evaluation tasks.\footnote{Dataset and pre-trained model demo are available at anonymous website \url{http://storytelling-lab.com/eval} and \url{https://github.com/sairin1202/StoryER}}