Abstract:Thomas C. Schelling, awarded the 2005 Nobel Memorial Prize in Economic Sciences, pointed out that ``individuals decisions (micromotives), while often personal and localized, can lead to societal outcomes (macrobehavior) that are far more complex and different from what the individuals intended.'' The current research related to large language models' (LLMs') micromotives, such as preferences or biases, assumes that users will make more appropriate decisions once LLMs are devoid of preferences or biases. Consequently, a series of studies has focused on removing bias from LLMs. In the NLP community, while there are many discussions on LLMs' micromotives, previous studies have seldom conducted a systematic examination of how LLMs may influence society's macrobehavior. In this paper, we follow the design of Schelling's model of segregation to observe the relationship between the micromotives and macrobehavior of LLMs. Our results indicate that, regardless of the level of bias in LLMs, a highly segregated society will emerge as more people follow LLMs' suggestions. We hope our discussion will spark further consideration of the fundamental assumption regarding the mitigation of LLMs' micromotives and encourage a reevaluation of how LLMs may influence users and society.
Abstract:Large Language Models (LLMs) have demonstrated significant capabilities in machine translation. However, their translation quality is sometimes questioned, as the generated outputs may deviate from expressions typically used by native speakers. These deviations often arise from differences in sentence structure between language systems. To address this issue, we propose ParaAlign Translator, a method that fine-tunes LLMs to paraphrase sentences, aligning their structures with those of the target language systems. This approach improves the performance of subsequent translations. Experimental results demonstrate that the proposed method enhances the LLaMA-3-8B model's performance in both resource-rich and low-resource scenarios and achieves parity with or surpassing the much larger LLaMA-3-70B model.
Abstract:Promises made by politicians, corporate leaders, and public figures have a significant impact on public perception, trust, and institutional reputation. However, the complexity and volume of such commitments, coupled with difficulties in verifying their fulfillment, necessitate innovative methods for assessing their credibility. This paper introduces the concept of Promise Verification, a systematic approach involving steps such as promise identification, evidence assessment, and the evaluation of timing for verification. We propose the first multilingual dataset, ML-Promise, which includes English, French, Chinese, Japanese, and Korean, aimed at facilitating in-depth verification of promises, particularly in the context of Environmental, Social, and Governance (ESG) reports. Given the growing emphasis on corporate environmental contributions, this dataset addresses the challenge of evaluating corporate promises, especially in light of practices like greenwashing. Our findings also explore textual and image-based baselines, with promising results from retrieval-augmented generation (RAG) approaches. This work aims to foster further discourse on the accountability of public commitments across multiple languages and domains.
Abstract:Data annotation refers to the labeling or tagging of textual data with relevant information. A large body of works have reported positive results on leveraging LLMs as an alternative to human annotators. However, existing studies focus on classic NLP tasks, and the extent to which LLMs as data annotators perform in domains requiring expert knowledge remains underexplored. In this work, we investigate comprehensive approaches across three highly specialized domains and discuss practical suggestions from a cost-effectiveness perspective. To the best of our knowledge, we present the first systematic evaluation of LLMs as expert-level data annotators.
Abstract:The advancement of text generation models has granted us the capability to produce coherent and convincing text on demand. Yet, in real-life circumstances, individuals do not continuously generate text or voice their opinions. For instance, consumers pen product reviews after weighing the merits and demerits of a product, and professional analysts issue reports following significant news releases. In essence, opinion expression is typically prompted by particular reasons or signals. Despite long-standing developments in opinion mining, the appropriate timing for expressing an opinion remains largely unexplored. To address this deficit, our study introduces an innovative task - the identification of news-triggered opinion expressing timing. We ground this task in the actions of professional stock analysts and develop a novel dataset for investigation. Our approach is decision-focused, leveraging text generation models to steer the classification model, thus enhancing overall performance. Our experimental findings demonstrate that the text generated by our model contributes fresh insights from various angles, effectively aiding in identifying the optimal timing for opinion expression.
Abstract:This paper explores the use of Large Language Models (LLMs) in the generation and evaluation of analytical reports derived from Earnings Calls (ECs). Addressing a current gap in research, we explore the generation of analytical reports with LLMs in a multi-agent framework, designing specialized agents that introduce diverse viewpoints and desirable topics of analysis into the report generation process. Through multiple analyses, we examine the alignment between generated and human-written reports and the impact of both individual and collective agents. Our findings suggest that the introduction of additional agents results in more insightful reports, although reports generated by human experts remain preferred in the majority of cases. Finally, we address the challenging issue of report evaluation, we examine the limitations and strengths of LLMs in assessing the quality of generated reports in different settings, revealing a significant correlation with human experts across multiple dimensions.
Abstract:Question answering (QA) has been a long-standing focus in the NLP field, predominantly addressing reading comprehension and common sense QA. However, scenarios involving the preparation of answers to probable questions during professional oral presentations remain underexplored. In this paper, we pioneer the examination of this crucial yet overlooked topic by utilizing real-world QA conversation transcripts between company managers and professional analysts. We explore the proposed task using three causal knowledge graphs (KGs) and three large language models (LLMs). This work provides foundational insights into the application of LLMs in professional QA scenarios, highlighting the importance of causal KGs and perspective-taking in generating effective responses.
Abstract:In diverse professional environments, ranging from academic conferences to corporate earnings calls, the ability to anticipate audience questions stands paramount. Traditional methods, which rely on manual assessment of an audience's background, interests, and subject knowledge, often fall short - particularly when facing large or heterogeneous groups, leading to imprecision and inefficiency. While NLP has made strides in text-based question generation, its primary focus remains on academic settings, leaving the intricate challenges of professional domains, especially earnings call conferences, underserved. Addressing this gap, our paper pioneers the multi-question generation (MQG) task specifically designed for earnings call contexts. Our methodology involves an exhaustive collection of earnings call transcripts and a novel annotation technique to classify potential questions. Furthermore, we introduce a retriever-enhanced strategy to extract relevant information. With a core aim of generating a spectrum of potential questions that analysts might pose, we derive these directly from earnings call content. Empirical evaluations underscore our approach's edge, revealing notable excellence in the accuracy, consistency, and perplexity of the questions generated.
Abstract:Training large language models (LLMs) from scratch is an expensive endeavor, particularly as world knowledge continually evolves. To maintain relevance and accuracy of LLMs, model editing has emerged as a pivotal research area. While these methods hold promise, they can also produce unintended side effects. Their underlying factors and causes remain largely unexplored. This paper delves into a critical factor-question type-by categorizing model editing questions. Our findings reveal that the extent of performance degradation varies significantly across different question types, providing new insights for experimental design in knowledge editing. Furthermore, we investigate whether insights from smaller models can be extrapolated to larger models. Our results indicate discrepancies in findings between models of different sizes, suggesting that insights from smaller models may not necessarily apply to larger models. Additionally, we examine the impact of batch size on side effects, discovering that increasing the batch size can mitigate performance drops.
Abstract:This paper investigates the role of expert-designed hint in enhancing sentiment analysis on financial social media posts. We explore the capability of large language models (LLMs) to empathize with writer perspectives and analyze sentiments. Our findings reveal that expert-designed hint, i.e., pointing out the importance of numbers, significantly improve performances across various LLMs, particularly in cases requiring perspective-taking skills. Further analysis on tweets containing different types of numerical data demonstrates that the inclusion of expert-designed hint leads to notable improvements in sentiment analysis performance, especially for tweets with monetary-related numbers. Our findings contribute to the ongoing discussion on the applicability of Theory of Mind in NLP and open new avenues for improving sentiment analysis in financial domains through the strategic use of expert knowledge.