Abstract:Promises made by politicians, corporate leaders, and public figures have a significant impact on public perception, trust, and institutional reputation. However, the complexity and volume of such commitments, coupled with difficulties in verifying their fulfillment, necessitate innovative methods for assessing their credibility. This paper introduces the concept of Promise Verification, a systematic approach involving steps such as promise identification, evidence assessment, and the evaluation of timing for verification. We propose the first multilingual dataset, ML-Promise, which includes English, French, Chinese, Japanese, and Korean, aimed at facilitating in-depth verification of promises, particularly in the context of Environmental, Social, and Governance (ESG) reports. Given the growing emphasis on corporate environmental contributions, this dataset addresses the challenge of evaluating corporate promises, especially in light of practices like greenwashing. Our findings also explore textual and image-based baselines, with promising results from retrieval-augmented generation (RAG) approaches. This work aims to foster further discourse on the accountability of public commitments across multiple languages and domains.
Abstract:We propose KMMLU, a new Korean benchmark with 35,030 expert-level multiple-choice questions across 45 subjects ranging from humanities to STEM. Unlike previous Korean benchmarks that are translated from existing English benchmarks, KMMLU is collected from original Korean exams, capturing linguistic and cultural aspects of the Korean language. We test 26 publically available and proprietary LLMs, identifying significant room for improvement. The best publicly available model achieves 50.54% on KMMLU, far below the average human performance of 62.6%. This model was primarily trained for English and Chinese, not Korean. Current LLMs tailored to Korean, such as Polyglot-Ko, perform far worse. Surprisingly, even the most capable proprietary LLMs, e.g., GPT-4 and HyperCLOVA X, achieve 59.95% and 53.40%, respectively. This suggests that further work is needed to improve Korean LLMs, and KMMLU offers the right tool to track this progress. We make our dataset publicly available on the Hugging Face Hub and integrate the benchmark into EleutherAI's Language Model Evaluation Harness.
Abstract:Large Language Models (LLMs) pretrained on massive corpora exhibit remarkable capabilities across a wide range of tasks, however, the attention given to non-English languages has been limited in this field of research. To address this gap and assess the proficiency of language models in the Korean language and culture, we present HAE-RAE Bench, covering 6 tasks including vocabulary, history, and general knowledge. Our evaluation of language models on this benchmark highlights the potential advantages of employing Large Language-Specific Models(LLSMs) over a comprehensive, universal model like GPT-3.5. Remarkably, our study reveals that models approximately 13 times smaller than GPT-3.5 can exhibit similar performance levels in terms of language-specific knowledge retrieval. This observation underscores the importance of homogeneous corpora for training professional-level language-specific models. On the contrary, we also observe a perplexing performance dip in these smaller LMs when they are tasked to generate structured answers.
Abstract:This paper presents our participation in the FinNLP-2023 shared task on multi-lingual environmental, social, and corporate governance issue identification (ML-ESG). The task's objective is to classify news articles based on the 35 ESG key issues defined by the MSCI ESG rating guidelines. Our approach focuses on the English and French subtasks, employing the CerebrasGPT, OPT, and Pythia models, along with the zero-shot and GPT3Mix Augmentation techniques. We utilize various encoder models, such as RoBERTa, DeBERTa, and FinBERT, subjecting them to knowledge distillation and additional training. Our approach yielded exceptional results, securing the first position in the English text subtask with F1-score 0.69 and the second position in the French text subtask with F1-score 0.78. These outcomes underscore the effectiveness of our methodology in identifying ESG issues in news articles across different languages. Our findings contribute to the exploration of ESG topics and highlight the potential of leveraging advanced language models for ESG issue identification.
Abstract:Extraction of sentiment signals from news text, stock message boards, and business reports, for stock movement prediction, has been a rising field of interest in finance. Building upon past literature, the most recent works attempt to better capture sentiment from sentences with complex syntactic structures by introducing aspect-level sentiment classification (ASC). Despite the growing interest, however, fine-grained sentiment analysis has not been fully explored in non-English literature due to the shortage of annotated finance-specific data. Accordingly, it is necessary for non-English languages to leverage datasets and pre-trained language models (PLM) of different domains, languages, and tasks to best their performance. To facilitate finance-specific ASC research in the Korean language, we build KorFinASC, a Korean aspect-level sentiment classification dataset for finance consisting of 12,613 human-annotated samples, and explore methods of intermediate transfer learning. Our experiments indicate that past research has been ignorant towards the potentially wrong knowledge of financial entities encoded during the training phase, which has overestimated the predictive power of PLMs. In our work, we use the term "non-stationary knowledge'' to refer to information that was previously correct but is likely to change, and present "TGT-Masking'', a novel masking pattern to restrict PLMs from speculating knowledge of the kind. Finally, through a series of transfer learning with TGT-Masking applied we improve 22.63% of classification accuracy compared to standalone models on KorFinASC.