Abstract:Visual-Language Models (VLMs) have become a powerful tool for bridging the gap between visual and linguistic understanding. However, the conventional learning approaches for VLMs often suffer from limitations, such as the high resource requirements of collecting and training image-text paired data. Recent research has suggested that language understanding plays a crucial role in the performance of VLMs, potentially indicating that text-only training could be a viable approach. In this work, we investigate the feasibility of enhancing fine-grained visual understanding in VLMs through text-only training. Inspired by how humans develop visual concept understanding, where rich textual descriptions can guide visual recognition, we hypothesize that VLMs can also benefit from leveraging text-based representations to improve their visual recognition abilities. We conduct comprehensive experiments on two distinct domains: fine-grained species classification and cultural visual understanding tasks. Our findings demonstrate that text-only training can be comparable to conventional image-text training while significantly reducing computational costs. This suggests a more efficient and cost-effective pathway for advancing VLM capabilities, particularly valuable in resource-constrained environments.
Abstract:In this paper, we are going to share a draft of the development of a conversational agent created to disseminate information about historical sites located in the Seoul. The primary objective of the agent is to increase awareness among visitors who are not familiar with Seoul, about the presence and precise locations of valuable cultural heritage sites. It aims to promote a basic understanding of Korea's rich and diverse cultural history. The agent is thoughtfully designed for accessibility in English and utilizes data generously provided by the Seoul Metropolitan Government. Despite the limited data volume, it consistently delivers reliable and accurate responses, seamlessly aligning with the available information. We have meticulously detailed the methodologies employed in creating this agent and provided a comprehensive overview of its underlying structure within the paper. Additionally, we delve into potential improvements to enhance this initial version of the system, with a primary emphasis on expanding the available data through our prompting. In conclusion, we provide an in-depth discussion of our expectations regarding the future impact of this agent in promoting and facilitating the sharing of historical sites.