Abstract:This study explored how Vision-Language Models (VLMs) process ignorance implicatures with visual and linguistic cues. Particularly, we focused on the effects of contexts (precise and approximate contexts) and modifier types (bare numerals, superlative, and comparative modifiers), which were considered pragmatic and semantic factors respectively. Methodologically, we conducted a truth-value judgment task in visually grounded settings using GPT-4o and Gemini 1.5 Pro. The results indicate that while both models exhibited sensitivity to linguistic cues (modifier), they failed to process ignorance implicatures with visual cues (context) as humans do. Specifically, the influence of context was weaker and inconsistent across models, indicating challenges in pragmatic reasoning for VLMs. On the other hand, superlative modifiers were more strongly associated with ignorance implicatures as compared to comparative modifiers, supporting the semantic view. These findings highlight the need for further advancements in VLMs to process language-vision information in a context-dependent way to achieve human-like pragmatic inference.
Abstract:LLMs have emerged as a promising tool for assisting individuals in diverse text-generation tasks, including job-related texts. However, LLM-generated answers have been increasingly found to exhibit gender bias. This study evaluates three LLMs (GPT-3.5, GPT-4, Claude) to conduct a multifaceted audit of LLM-generated interview responses across models, question types, and jobs, and their alignment with two gender stereotypes. Our findings reveal that gender bias is consistent, and closely aligned with gender stereotypes and the dominance of jobs. Overall, this study contributes to the systematic examination of gender bias in LLM-generated interview responses, highlighting the need for a mindful approach to mitigate such biases in related applications.