Abstract:The recent advancements in Large Language Models(LLMs) have had a significant impact on a wide range of fields, from general domains to specialized areas. However, these advancements have also significantly increased the potential for malicious users to exploit harmful and jailbreak prompts for malicious attacks. Although there have been many efforts to prevent harmful prompts and jailbreak prompts, protecting LLMs from such malicious attacks remains an important and challenging task. In this paper, we propose QGuard, a simple yet effective safety guard method, that utilizes question prompting to block harmful prompts in a zero-shot manner. Our method can defend LLMs not only from text-based harmful prompts but also from multi-modal harmful prompt attacks. Moreover, by diversifying and modifying guard questions, our approach remains robust against the latest harmful prompts without fine-tuning. Experimental results show that our model performs competitively on both text-only and multi-modal harmful datasets. Additionally, by providing an analysis of question prompting, we enable a white-box analysis of user inputs. We believe our method provides valuable insights for real-world LLM services in mitigating security risks associated with harmful prompts.
Abstract:Non-factoid question-answering (NFQA) poses a significant challenge due to its open-ended nature, diverse intents, and the need for multi-aspect reasoning, which renders conventional factoid QA approaches, including retrieval-augmented generation (RAG), inadequate. Unlike factoid questions, non-factoid questions (NFQs) lack definitive answers and require synthesizing information from multiple sources across various reasoning dimensions. To address these limitations, we introduce Typed-RAG, a type-aware multi-aspect decomposition framework within the RAG paradigm for NFQA. Typed-RAG classifies NFQs into distinct types -- such as debate, experience, and comparison -- and applies aspect-based decomposition to refine retrieval and generation strategies. By decomposing multi-aspect NFQs into single-aspect sub-queries and aggregating the results, Typed-RAG generates more informative and contextually relevant responses. To evaluate Typed-RAG, we introduce Wiki-NFQA, a benchmark dataset covering diverse NFQ types. Experimental results demonstrate that Typed-RAG outperforms baselines, thereby highlighting the importance of type-aware decomposition for effective retrieval and generation in NFQA. Our code and dataset are available at https://github.com/TeamNLP/Typed-RAG.
Abstract:This study explored how Vision-Language Models (VLMs) process ignorance implicatures with visual and linguistic cues. Particularly, we focused on the effects of contexts (precise and approximate contexts) and modifier types (bare numerals, superlative, and comparative modifiers), which were considered pragmatic and semantic factors respectively. Methodologically, we conducted a truth-value judgment task in visually grounded settings using GPT-4o and Gemini 1.5 Pro. The results indicate that while both models exhibited sensitivity to linguistic cues (modifier), they failed to process ignorance implicatures with visual cues (context) as humans do. Specifically, the influence of context was weaker and inconsistent across models, indicating challenges in pragmatic reasoning for VLMs. On the other hand, superlative modifiers were more strongly associated with ignorance implicatures as compared to comparative modifiers, supporting the semantic view. These findings highlight the need for further advancements in VLMs to process language-vision information in a context-dependent way to achieve human-like pragmatic inference.
Abstract:LLMs have emerged as a promising tool for assisting individuals in diverse text-generation tasks, including job-related texts. However, LLM-generated answers have been increasingly found to exhibit gender bias. This study evaluates three LLMs (GPT-3.5, GPT-4, Claude) to conduct a multifaceted audit of LLM-generated interview responses across models, question types, and jobs, and their alignment with two gender stereotypes. Our findings reveal that gender bias is consistent, and closely aligned with gender stereotypes and the dominance of jobs. Overall, this study contributes to the systematic examination of gender bias in LLM-generated interview responses, highlighting the need for a mindful approach to mitigate such biases in related applications.