Abstract:Non-factoid question-answering (NFQA) poses a significant challenge due to its open-ended nature, diverse intents, and the need for multi-aspect reasoning, which renders conventional factoid QA approaches, including retrieval-augmented generation (RAG), inadequate. Unlike factoid questions, non-factoid questions (NFQs) lack definitive answers and require synthesizing information from multiple sources across various reasoning dimensions. To address these limitations, we introduce Typed-RAG, a type-aware multi-aspect decomposition framework within the RAG paradigm for NFQA. Typed-RAG classifies NFQs into distinct types -- such as debate, experience, and comparison -- and applies aspect-based decomposition to refine retrieval and generation strategies. By decomposing multi-aspect NFQs into single-aspect sub-queries and aggregating the results, Typed-RAG generates more informative and contextually relevant responses. To evaluate Typed-RAG, we introduce Wiki-NFQA, a benchmark dataset covering diverse NFQ types. Experimental results demonstrate that Typed-RAG outperforms baselines, thereby highlighting the importance of type-aware decomposition for effective retrieval and generation in NFQA. Our code and dataset are available at https://github.com/TeamNLP/Typed-RAG.
Abstract:This paper presents an effective method for generating a spatiotemporal (time-varying) texture map for a dynamic object using a single RGB-D camera. The input of our framework is a 3D template model and an RGB-D image sequence. Since there are invisible areas of the object at a frame in a single-camera setup, textures of such areas need to be borrowed from other frames. We formulate the problem as an MRF optimization and define cost functions to reconstruct a plausible spatiotemporal texture for a dynamic object. Experimental results demonstrate that our spatiotemporal textures can reproduce the active appearances of captured objects better than approaches using a single texture map.