Abstract:Understanding 3D motion from videos presents inherent challenges due to the diverse types of movement, ranging from rigid and deformable objects to articulated structures. To overcome this, we propose Liv3Stroke, a novel approach for abstracting objects in motion with deformable 3D strokes. The detailed movements of an object may be represented by unstructured motion vectors or a set of motion primitives using a pre-defined articulation from a template model. Just as a free-hand sketch can intuitively visualize scenes or intentions with a sparse set of lines, we utilize a set of parametric 3D curves to capture a set of spatially smooth motion elements for general objects with unknown structures. We first extract noisy, 3D point cloud motion guidance from video frames using semantic features, and our approach deforms a set of curves to abstract essential motion features as a set of explicit 3D representations. Such abstraction enables an understanding of prominent components of motions while maintaining robustness to environmental factors. Our approach allows direct analysis of 3D object movements from video, tackling the uncertainty that typically occurs when translating real-world motion into recorded footage. The project page is accessible via: https://jaeah.me/liv3stroke_web
Abstract:Recent advances in deep learning-based point cloud registration have improved generalization, yet most methods still require retraining or manual parameter tuning for each new environment. In this paper, we identify three key factors limiting generalization: (a) reliance on environment-specific voxel size and search radius, (b) poor out-of-domain robustness of learning-based keypoint detectors, and (c) raw coordinate usage, which exacerbates scale discrepancies. To address these issues, we present a zero-shot registration pipeline called BUFFER-X by (a) adaptively determining voxel size/search radii, (b) using farthest point sampling to bypass learned detectors, and (c) leveraging patch-wise scale normalization for consistent coordinate bounds. In particular, we present a multi-scale patch-based descriptor generation and a hierarchical inlier search across scales to improve robustness in diverse scenes. We also propose a novel generalizability benchmark using 11 datasets that cover various indoor/outdoor scenarios and sensor modalities, demonstrating that BUFFER-X achieves substantial generalization without prior information or manual parameter tuning for the test datasets. Our code is available at https://github.com/MIT-SPARK/BUFFER-X.
Abstract:We present LocoGS, a locality-aware 3D Gaussian Splatting (3DGS) framework that exploits the spatial coherence of 3D Gaussians for compact modeling of volumetric scenes. To this end, we first analyze the local coherence of 3D Gaussian attributes, and propose a novel locality-aware 3D Gaussian representation that effectively encodes locally-coherent Gaussian attributes using a neural field representation with a minimal storage requirement. On top of the novel representation, LocoGS is carefully designed with additional components such as dense initialization, an adaptive spherical harmonics bandwidth scheme and different encoding schemes for different Gaussian attributes to maximize compression performance. Experimental results demonstrate that our approach outperforms the rendering quality of existing compact Gaussian representations for representative real-world 3D datasets while achieving from 54.6$\times$ to 96.6$\times$ compressed storage size and from 2.1$\times$ to 2.4$\times$ rendering speed than 3DGS. Even our approach also demonstrates an averaged 2.4$\times$ higher rendering speed than the state-of-the-art compression method with comparable compression performance.
Abstract:In the era of vision Transformers, the recent success of VanillaNet shows the huge potential of simple and concise convolutional neural networks (ConvNets). Where such models mainly focus on runtime, it is also crucial to simultaneously focus on other aspects, e.g., FLOPs, parameters, etc, to strengthen their utility further. To this end, we introduce a refreshing ConvNet macro design called Columnar Stage Network (CoSNet). CoSNet has a systematically developed simple and concise structure, smaller depth, low parameter count, low FLOPs, and attention-less operations, well suited for resource-constrained deployment. The key novelty of CoSNet is deploying parallel convolutions with fewer kernels fed by input replication, using columnar stacking of these convolutions, and minimizing the use of 1x1 convolution layers. Our comprehensive evaluations show that CoSNet rivals many renowned ConvNets and Transformer designs under resource-constrained scenarios. Code: https://github.com/ashishkumar822/CoSNet
Abstract:We present an accurate and GPU-accelerated Stereo Visual SLAM design called Jetson-SLAM. It exhibits frame-processing rates above 60FPS on NVIDIA's low-powered 10W Jetson-NX embedded computer and above 200FPS on desktop-grade 200W GPUs, even in stereo configuration and in the multiscale setting. Our contributions are threefold: (i) a Bounded Rectification technique to prevent tagging many non-corner points as a corner in FAST detection, improving SLAM accuracy. (ii) A novel Pyramidal Culling and Aggregation (PyCA) technique that yields robust features while suppressing redundant ones at high speeds by harnessing a GPU device. PyCA uses our new Multi-Location Per Thread culling strategy (MLPT) and Thread-Efficient Warp-Allocation (TEWA) scheme for GPU to enable Jetson-SLAM achieving high accuracy and speed on embedded devices. (iii) Jetson-SLAM library achieves resource efficiency by having a data-sharing mechanism. Our experiments on three challenging datasets: KITTI, EuRoC, and KAIST-VIO, and two highly accurate SLAM backends: Full-BA and ICE-BA show that Jetson-SLAM is the fastest available accurate and GPU-accelerated SLAM system (Fig. 1).
Abstract:Detection Transformers (DETR) are renowned object detection pipelines, however computationally efficient multiscale detection using DETR is still challenging. In this paper, we propose a Cross-Resolution Encoding-Decoding (CRED) mechanism that allows DETR to achieve the accuracy of high-resolution detection while having the speed of low-resolution detection. CRED is based on two modules; Cross Resolution Attention Module (CRAM) and One Step Multiscale Attention (OSMA). CRAM is designed to transfer the knowledge of low-resolution encoder output to a high-resolution feature. While OSMA is designed to fuse multiscale features in a single step and produce a feature map of a desired resolution enriched with multiscale information. When used in prominent DETR methods, CRED delivers accuracy similar to the high-resolution DETR counterpart in roughly 50% fewer FLOPs. Specifically, state-of-the-art DN-DETR, when used with CRED (calling CRED-DETR), becomes 76% faster, with ~50% reduced FLOPs than its high-resolution counterpart with 202 G FLOPs on MS-COCO benchmark. We plan to release pretrained CRED-DETRs for use by the community. Code: https://github.com/ashishkumar822/CRED-DETR
Abstract:Drag-based image editing has recently gained popularity for its interactivity and precision. However, despite the ability of text-to-image models to generate samples within a second, drag editing still lags behind due to the challenge of accurately reflecting user interaction while maintaining image content. Some existing approaches rely on computationally intensive per-image optimization or intricate guidance-based methods, requiring additional inputs such as masks for movable regions and text prompts, thereby compromising the interactivity of the editing process. We introduce InstantDrag, an optimization-free pipeline that enhances interactivity and speed, requiring only an image and a drag instruction as input. InstantDrag consists of two carefully designed networks: a drag-conditioned optical flow generator (FlowGen) and an optical flow-conditioned diffusion model (FlowDiffusion). InstantDrag learns motion dynamics for drag-based image editing in real-world video datasets by decomposing the task into motion generation and motion-conditioned image generation. We demonstrate InstantDrag's capability to perform fast, photo-realistic edits without masks or text prompts through experiments on facial video datasets and general scenes. These results highlight the efficiency of our approach in handling drag-based image editing, making it a promising solution for interactive, real-time applications.
Abstract:Learning to assemble geometric shapes into a larger target structure is a pivotal task in various practical applications. In this work, we tackle this problem by establishing local correspondences between point clouds of part shapes in both coarse- and fine-levels. To this end, we introduce Proxy Match Transform (PMT), an approximate high-order feature transform layer that enables reliable matching between mating surfaces of parts while incurring low costs in memory and computation. Building upon PMT, we introduce a new framework, dubbed Proxy Match TransformeR (PMTR), for the geometric assembly task. We evaluate the proposed PMTR on the large-scale 3D geometric shape assembly benchmark dataset of Breaking Bad and demonstrate its superior performance and efficiency compared to state-of-the-art methods. Project page: https://nahyuklee.github.io/pmtr.
Abstract:The large abundance of perspective camera datasets facilitated the emergence of novel learning-based strategies for various tasks, such as camera localization, single image depth estimation, or view synthesis. However, panoramic or omnidirectional image datasets, including essential information, such as pose and depth, are mostly made with synthetic scenes. In this work, we introduce a large scale 360$^{\circ}$ videos dataset in the wild. This dataset has been carefully scraped from the Internet and has been captured from various locations worldwide. Hence, this dataset exhibits very diversified environments (e.g., indoor and outdoor) and contexts (e.g., with and without moving objects). Each of the 25K images constituting our dataset is provided with its respective camera's pose and depth map. We illustrate the relevance of our dataset for two main tasks, namely, single image depth estimation and view synthesis.
Abstract:Channel pruning approaches for convolutional neural networks (ConvNets) deactivate the channels, statically or dynamically, and require special implementation. In addition, channel squeezing in representative ConvNets is carried out via 1x1 convolutions which dominates a large portion of computations and network parameters. Given these challenges, we propose an effective multi-purpose module for dynamic channel sampling, namely Pick-or-Mix (PiX), which does not require special implementation. PiX divides a set of channels into subsets and then picks from them, where the picking decision is dynamically made per each pixel based on the input activations. We plug PiX into prominent ConvNet architectures and verify its multi-purpose utilities. After replacing 1x1 channel squeezing layers in ResNet with PiX, the network becomes 25% faster without losing accuracy. We show that PiX allows ConvNets to learn better data representation than widely adopted approaches to enhance networks' representation power (e.g., SE, CBAM, AFF, SKNet, and DWP). We also show that PiX achieves state-of-the-art performance on network downscaling and dynamic channel pruning applications.