Abstract:In this paper, we present GyroDeblurNet, a novel single image deblurring method that utilizes a gyro sensor to effectively resolve the ill-posedness of image deblurring. The gyro sensor provides valuable information about camera motion during exposure time that can significantly improve deblurring quality. However, effectively exploiting real-world gyro data is challenging due to significant errors from various sources including sensor noise, the disparity between the positions of a camera module and a gyro sensor, the absence of translational motion information, and moving objects whose motions cannot be captured by a gyro sensor. To handle gyro error, GyroDeblurNet is equipped with two novel neural network blocks: a gyro refinement block and a gyro deblurring block. The gyro refinement block refines the error-ridden gyro data using the blur information from the input image. On the other hand, the gyro deblurring block removes blur from the input image using the refined gyro data and further compensates for gyro error by leveraging the blur information from the input image. For training a neural network with erroneous gyro data, we propose a training strategy based on the curriculum learning. We also introduce a novel gyro data embedding scheme to represent real-world intricate camera shakes. Finally, we present a synthetic dataset and a real dataset for the training and evaluation of gyro-based single image deblurring. Our experiments demonstrate that our approach achieves state-of-the-art deblurring quality by effectively utilizing erroneous gyro data.
Abstract:Many surface reconstruction methods incorporate normal integration, which is a process to obtain a depth map from surface gradients. In this process, the input may represent a surface with discontinuities, e.g., due to self-occlusion. To reconstruct an accurate depth map from the input normal map, hidden surface gradients occurring from the jumps must be handled. To model these jumps correctly, we design a novel discretization scheme for the domain of normal integration. Our key idea is to introduce auxiliary edges, which bridge between piecewise-smooth patches in the domain so that the magnitude of hidden jumps can be explicitly expressed. Using the auxiliary edges, we design a novel algorithm to optimize the discontinuity and the depth map from the input normal map. Our method optimizes discontinuities by using a combination of iterative re-weighted least squares and iterative filtering of the jump magnitudes on auxiliary edges to provide strong sparsity regularization. Compared to previous discontinuity-preserving normal integration methods, which model the magnitudes of jumps only implicitly, our method reconstructs subtle discontinuities accurately thanks to our explicit representation of jumps allowing for strong sparsity regularization.
Abstract:Image editing has been a long-standing challenge in the research community with its far-reaching impact on numerous applications. Recently, text-driven methods started to deliver promising results in domains like human faces, but their applications to more complex domains have been relatively limited. In this work, we explore the task of fashion style editing, where we aim to manipulate the fashion style of human imagery using text descriptions. Specifically, we leverage a generative human prior and achieve fashion style editing by navigating its learned latent space. We first verify that the existing text-driven editing methods fall short for our problem due to their overly simplified guidance signal, and propose two directions to reinforce the guidance: textual augmentation and visual referencing. Combined with our empirical findings on the latent space structure, our Fashion Style Editing framework (FaSE) successfully projects abstract fashion concepts onto human images and introduces exciting new applications to the field.
Abstract:RAW images are rarely shared mainly due to its excessive data size compared to their sRGB counterparts obtained by camera ISPs. Learning the forward and inverse processes of camera ISPs has been recently demonstrated, enabling physically-meaningful RAW-level image processing on input sRGB images. However, existing learning-based ISP methods fail to handle the large variations in the ISP processes with respect to camera parameters such as ISO and exposure time, and have limitations when used for various applications. In this paper, we propose ParamISP, a learning-based method for forward and inverse conversion between sRGB and RAW images, that adopts a novel neural-network module to utilize camera parameters, which is dubbed as ParamNet. Given the camera parameters provided in the EXIF data, ParamNet converts them into a feature vector to control the ISP networks. Extensive experiments demonstrate that ParamISP achieve superior RAW and sRGB reconstruction results compared to previous methods and it can be effectively used for a variety of applications such as deblurring dataset synthesis, raw deblurring, HDR reconstruction, and camera-to-camera transfer.
Abstract:In 3D shape reconstruction based on template mesh deformation, a regularization, such as smoothness energy, is employed to guide the reconstruction into a desirable direction. In this paper, we highlight an often overlooked property in the regularization: the vertex density in the mesh. Without careful control on the density, the reconstruction may suffer from under-sampling of vertices near shape details. We propose a novel mesh density adaptation method to resolve the under-sampling problem. Our mesh density adaptation energy increases the density of vertices near complex structures via deformation to help reconstruction of shape details. We demonstrate the usability and performance of mesh density adaptation with two tasks, inverse rendering and non-rigid surface registration. Our method produces more accurate reconstruction results compared to the cases without mesh density adaptation.
Abstract:Photometric stereo leverages variations in illumination conditions to reconstruct per-pixel surface normals. The concept of display photometric stereo, which employs a conventional monitor as an illumination source, has the potential to overcome limitations often encountered in bulky and difficult-to-use conventional setups. In this paper, we introduce Differentiable Display Photometric Stereo (DDPS), a method designed to achieve high-fidelity normal reconstruction using an off-the-shelf monitor and camera. DDPS addresses a critical yet often neglected challenge in photometric stereo: the optimization of display patterns for enhanced normal reconstruction. We present a differentiable framework that couples basis-illumination image formation with a photometric-stereo reconstruction method. This facilitates the learning of display patterns that leads to high-quality normal reconstruction through automatic differentiation. Addressing the synthetic-real domain gap inherent in end-to-end optimization, we propose the use of a real-world photometric-stereo training dataset composed of 3D-printed objects. Moreover, to reduce the ill-posed nature of photometric stereo, we exploit the linearly polarized light emitted from the monitor to optically separate diffuse and specular reflections in the captured images. We demonstrate that DDPS allows for learning display patterns optimized for a target configuration and is robust to initialization. We assess DDPS on 3D-printed objects with ground-truth normals and diverse real-world objects, validating that DDPS enables effective photometric-stereo reconstruction.
Abstract:A 3D caricature is an exaggerated 3D depiction of a human face. The goal of this paper is to model the variations of 3D caricatures in a compact parameter space so that we can provide a useful data-driven toolkit for handling 3D caricature deformations. To achieve the goal, we propose an MLP-based framework for building a deformable surface model, which takes a latent code and produces a 3D surface. In the framework, a SIREN MLP models a function that takes a 3D position on a fixed template surface and returns a 3D displacement vector for the input position. We create variations of 3D surfaces by learning a hypernetwork that takes a latent code and produces the parameters of the MLP. Once learned, our deformable model provides a nice editing space for 3D caricatures, supporting label-based semantic editing and point-handle-based deformation, both of which produce highly exaggerated and natural 3D caricature shapes. We also demonstrate other applications of our deformable model, such as automatic 3D caricature creation.
Abstract:While motion compensation greatly improves video deblurring quality, separately performing motion compensation and video deblurring demands huge computational overhead. This paper proposes a real-time video deblurring framework consisting of a lightweight multi-task unit that supports both video deblurring and motion compensation in an efficient way. The multi-task unit is specifically designed to handle large portions of the two tasks using a single shared network, and consists of a multi-task detail network and simple networks for deblurring and motion compensation. The multi-task unit minimizes the cost of incorporating motion compensation into video deblurring and enables real-time deblurring. Moreover, by stacking multiple multi-task units, our framework provides flexible control between the cost and deblurring quality. We experimentally validate the state-of-the-art deblurring quality of our approach, which runs at a much faster speed compared to previous methods, and show practical real-time performance (30.99dB@30fps measured in the DVD dataset).
Abstract:We propose the first reference-based video super-resolution (RefVSR) approach that utilizes reference videos for high-fidelity results. We focus on RefVSR in a triple-camera setting, where we aim at super-resolving a low-resolution ultra-wide video utilizing wide-angle and telephoto videos. We introduce the first RefVSR network that recurrently aligns and propagates temporal reference features fused with features extracted from low-resolution frames. To facilitate the fusion and propagation of temporal reference features, we propose a propagative temporal fusion module. For learning and evaluation of our network, we present the first RefVSR dataset consisting of triplets of ultra-wide, wide-angle, and telephoto videos concurrently taken from triple cameras of a smartphone. We also propose a two-stage training strategy fully utilizing video triplets in the proposed dataset for real-world 4x video super-resolution. We extensively evaluate our method, and the result shows the state-of-the-art performance in 4x super-resolution.
Abstract:Most of traditional single image deblurring methods before deep learning adopt a coarse-to-fine scheme that estimates a sharp image at a coarse scale and progressively refines it at finer scales. While this scheme has also been adopted to several deep learning-based approaches, recently a number of single-scale approaches have been introduced showing superior performance to previous coarse-to-fine approaches both in quality and computation time, making the traditional coarse-to-fine scheme seemingly obsolete. In this paper, we revisit the coarse-to-fine scheme, and analyze defects of previous coarse-to-fine approaches that degrade their performance. Based on the analysis, we propose Multi-Scale-Stage Network (MSSNet), a novel deep learning-based approach to single image deblurring that adopts our remedies to the defects. Specifically, MSSNet adopts three novel technical components: stage configuration reflecting blur scales, an inter-scale information propagation scheme, and a pixel-shuffle-based multi-scale scheme. Our experiments show that MSSNet achieves the state-of-the-art performance in terms of quality, network size, and computation time.