Abstract:In this paper, we present GyroDeblurNet, a novel single image deblurring method that utilizes a gyro sensor to effectively resolve the ill-posedness of image deblurring. The gyro sensor provides valuable information about camera motion during exposure time that can significantly improve deblurring quality. However, effectively exploiting real-world gyro data is challenging due to significant errors from various sources including sensor noise, the disparity between the positions of a camera module and a gyro sensor, the absence of translational motion information, and moving objects whose motions cannot be captured by a gyro sensor. To handle gyro error, GyroDeblurNet is equipped with two novel neural network blocks: a gyro refinement block and a gyro deblurring block. The gyro refinement block refines the error-ridden gyro data using the blur information from the input image. On the other hand, the gyro deblurring block removes blur from the input image using the refined gyro data and further compensates for gyro error by leveraging the blur information from the input image. For training a neural network with erroneous gyro data, we propose a training strategy based on the curriculum learning. We also introduce a novel gyro data embedding scheme to represent real-world intricate camera shakes. Finally, we present a synthetic dataset and a real dataset for the training and evaluation of gyro-based single image deblurring. Our experiments demonstrate that our approach achieves state-of-the-art deblurring quality by effectively utilizing erroneous gyro data.
Abstract:Mobile cameras, despite their significant advancements, still face low-light challenges due to compact sensors and lenses, leading to longer exposures and motion blur. Traditional solutions like blind deconvolution and learning-based methods often fall short in handling ill-posedness of the deblurring problem. To address this, we propose a novel deblurring framework for multi-camera smartphones, utilizing a hybrid imaging technique. We simultaneously capture a long exposure wide-angle image and ultra-wide burst images from a smartphone, and use the sharp burst to estimate blur kernels for deblurring the wide-angle image. For learning and evaluation of our network, we introduce the HCBlur dataset, which includes pairs of blurry wide-angle and sharp ultra-wide burst images, and their sharp wide-angle counterparts. We extensively evaluate our method, and the result shows the state-of-the-art quality.