Abstract:Burst image super-resolution has been a topic of active research in recent years due to its ability to obtain a high-resolution image by using complementary information between multiple frames in the burst. In this work, we explore using burst shots with non-uniform exposures to confront real-world practical scenarios by introducing a new benchmark dataset, dubbed Non-uniformly Exposed Burst Image (NEBI), that includes the burst frames at varying exposure times to obtain a broader range of irradiance and motion characteristics within a scene. As burst shots with non-uniform exposures exhibit varying levels of degradation, fusing information of the burst shots into the first frame as a base frame may not result in optimal image quality. To address this limitation, we propose a Frame Selection Network (FSN) for non-uniform scenarios. This network seamlessly integrates into existing super-resolution methods in a plug-and-play manner with low computational costs. The comparative analysis reveals the effectiveness of the nonuniform setting for the practical scenario and our FSN on synthetic-/real- NEBI datasets.
Abstract:RAW images are rarely shared mainly due to its excessive data size compared to their sRGB counterparts obtained by camera ISPs. Learning the forward and inverse processes of camera ISPs has been recently demonstrated, enabling physically-meaningful RAW-level image processing on input sRGB images. However, existing learning-based ISP methods fail to handle the large variations in the ISP processes with respect to camera parameters such as ISO and exposure time, and have limitations when used for various applications. In this paper, we propose ParamISP, a learning-based method for forward and inverse conversion between sRGB and RAW images, that adopts a novel neural-network module to utilize camera parameters, which is dubbed as ParamNet. Given the camera parameters provided in the EXIF data, ParamNet converts them into a feature vector to control the ISP networks. Extensive experiments demonstrate that ParamISP achieve superior RAW and sRGB reconstruction results compared to previous methods and it can be effectively used for a variety of applications such as deblurring dataset synthesis, raw deblurring, HDR reconstruction, and camera-to-camera transfer.