Abstract:The exponential increase in video content poses significant challenges in terms of efficient navigation, search, and retrieval, thus requiring advanced video summarization techniques. Existing video summarization methods, which heavily rely on visual features and temporal dynamics, often fail to capture the semantics of video content, resulting in incomplete or incoherent summaries. To tackle the challenge, we propose a new video summarization framework that leverages the capabilities of recent Large Language Models (LLMs), expecting that the knowledge learned from massive data enables LLMs to evaluate video frames in a manner that better aligns with diverse semantics and human judgments, effectively addressing the inherent subjectivity in defining keyframes. Our method, dubbed LLM-based Video Summarization (LLMVS), translates video frames into a sequence of captions using a Muti-modal Large Language Model (M-LLM) and then assesses the importance of each frame using an LLM, based on the captions in its local context. These local importance scores are refined through a global attention mechanism in the entire context of video captions, ensuring that our summaries effectively reflect both the details and the overarching narrative. Our experimental results demonstrate the superiority of the proposed method over existing ones in standard benchmarks, highlighting the potential of LLMs in the processing of multimedia content.
Abstract:We propose a novel memory-modular learner for image classification that separates knowledge memorization from reasoning. Our model enables effective generalization to new classes by simply replacing the memory contents, without the need for model retraining. Unlike traditional models that encode both world knowledge and task-specific skills into their weights during training, our model stores knowledge in the external memory of web-crawled image and text data. At inference time, the model dynamically selects relevant content from the memory based on the input image, allowing it to adapt to arbitrary classes by simply replacing the memory contents. The key differentiator that our learner meta-learns to perform classification tasks with noisy web data from unseen classes, resulting in robust performance across various classification scenarios. Experimental results demonstrate the promising performance and versatility of our approach in handling diverse classification tasks, including zero-shot/few-shot classification of unseen classes, fine-grained classification, and class-incremental classification.
Abstract:Symmetry plays a vital role in understanding structural patterns, aiding object recognition and scene interpretation. This paper focuses on rotation symmetry, where objects remain unchanged when rotated around a central axis, requiring detection of rotation centers and supporting vertices. Traditional methods relied on hand-crafted feature matching, while recent segmentation models based on convolutional neural networks detect rotation centers but struggle with 3D geometric consistency due to viewpoint distortions. To overcome this, we propose a model that directly predicts rotation centers and vertices in 3D space and projects the results back to 2D while preserving structural integrity. By incorporating a vertex reconstruction stage enforcing 3D geometric priors -- such as equal side lengths and interior angles -- our model enhances robustness and accuracy. Experiments on the DENDI dataset show superior performance in rotation axis detection and validate the impact of 3D priors through ablation studies.
Abstract:We tackle open-vocabulary 3D scene understanding by introducing a novel data generation pipeline and training framework. Our method addresses three critical requirements for effective training: precise 3D region segmentation, comprehensive textual descriptions, and sufficient dataset scale. By leveraging state-of-the-art open-vocabulary image segmentation models and region-aware Vision-Language Models, we develop an automatic pipeline that generates high-quality 3D mask-text pairs. Applying this pipeline to multiple 3D scene datasets, we create Mosaic3D-5.6M, a dataset of over 30K annotated scenes with 5.6M mask-text pairs, significantly larger than existing datasets. Building upon this data, we propose Mosaic3D, a foundation model combining a 3D encoder trained with contrastive learning and a lightweight mask decoder for open-vocabulary 3D semantic and instance segmentation. Our approach achieves state-of-the-art results on open-vocabulary 3D semantic and instance segmentation tasks including ScanNet200, Matterport3D, and ScanNet++, with ablation studies validating the effectiveness of our large-scale training data.
Abstract:Temporal action segmentation and long-term action anticipation are two popular vision tasks for the temporal analysis of actions in videos. Despite apparent relevance and potential complementarity, these two problems have been investigated as separate and distinct tasks. In this work, we tackle these two problems, action segmentation and action anticipation, jointly using a unified diffusion model dubbed ActFusion. The key idea to unification is to train the model to effectively handle both visible and invisible parts of the sequence in an integrated manner; the visible part is for temporal segmentation, and the invisible part is for future anticipation. To this end, we introduce a new anticipative masking strategy during training in which a late part of the video frames is masked as invisible, and learnable tokens replace these frames to learn to predict the invisible future. Experimental results demonstrate the bi-directional benefits between action segmentation and anticipation. ActFusion achieves the state-of-the-art performance across the standard benchmarks of 50 Salads, Breakfast, and GTEA, outperforming task-specific models in both of the two tasks with a single unified model through joint learning.
Abstract:Dynamic view synthesis (DVS) has advanced remarkably in recent years, achieving high-fidelity rendering while reducing computational costs. Despite the progress, optimizing dynamic neural fields from casual videos remains challenging, as these videos do not provide direct 3D information, such as camera trajectories or the underlying scene geometry. In this work, we present RoDyGS, an optimization pipeline for dynamic Gaussian Splatting from casual videos. It effectively learns motion and underlying geometry of scenes by separating dynamic and static primitives, and ensures that the learned motion and geometry are physically plausible by incorporating motion and geometric regularization terms. We also introduce a comprehensive benchmark, Kubric-MRig, that provides extensive camera and object motion along with simultaneous multi-view captures, features that are absent in previous benchmarks. Experimental results demonstrate that the proposed method significantly outperforms previous pose-free dynamic neural fields and achieves competitive rendering quality compared to existing pose-free static neural fields. The code and data are publicly available at https://rodygs.github.io/.
Abstract:Active research is currently underway to enhance the efficiency of vision transformers (ViTs). Most studies have focused solely on effective token mixers, overlooking the potential relationship with normalization. To boost diverse feature learning, we propose two components: a normalization module called multi-view normalization (MVN) and a token mixer called multi-view token mixer (MVTM). The MVN integrates three differently normalized features via batch, layer, and instance normalization using a learnable weighted sum. Each normalization method outputs a different distribution, generating distinct features. Thus, the MVN is expected to offer diverse pattern information to the token mixer, resulting in beneficial synergy. The MVTM is a convolution-based multiscale token mixer with local, intermediate, and global filters, and it incorporates stage specificity by configuring various receptive fields for the token mixer at each stage, efficiently capturing ranges of visual patterns. We propose a novel ViT model, multi-vision transformer (MVFormer), adopting the MVN and MVTM in the MetaFormer block, the generalized ViT scheme. Our MVFormer outperforms state-of-the-art convolution-based ViTs on image classification, object detection, and instance and semantic segmentation with the same or lower parameters and MACs. Particularly, MVFormer variants, MVFormer-T, S, and B achieve 83.4%, 84.3%, and 84.6% top-1 accuracy, respectively, on ImageNet-1K benchmark.
Abstract:Determining the 3D orientations of an object in an image, known as single-image pose estimation, is a crucial task in 3D vision applications. Existing methods typically learn 3D rotations parametrized in the spatial domain using Euler angles or quaternions, but these representations often introduce discontinuities and singularities. SO(3)-equivariant networks enable the structured capture of pose patterns with data-efficient learning, but the parametrizations in spatial domain are incompatible with their architecture, particularly spherical CNNs, which operate in the frequency domain to enhance computational efficiency. To overcome these issues, we propose a frequency-domain approach that directly predicts Wigner-D coefficients for 3D rotation regression, aligning with the operations of spherical CNNs. Our SO(3)-equivariant pose harmonics predictor overcomes the limitations of spatial parameterizations, ensuring consistent pose estimation under arbitrary rotations. Trained with a frequency-domain regression loss, our method achieves state-of-the-art results on benchmarks such as ModelNet10-SO(3) and PASCAL3D+, with significant improvements in accuracy, robustness, and data efficiency.
Abstract:We present lazy visual grounding, a two-stage approach of unsupervised object mask discovery followed by object grounding, for open-vocabulary semantic segmentation. Plenty of the previous art casts this task as pixel-to-text classification without object-level comprehension, leveraging the image-to-text classification capability of pretrained vision-and-language models. We argue that visual objects are distinguishable without the prior text information as segmentation is essentially a vision task. Lazy visual grounding first discovers object masks covering an image with iterative Normalized cuts and then later assigns text on the discovered objects in a late interaction manner. Our model requires no additional training yet shows great performance on five public datasets: Pascal VOC, Pascal Context, COCO-object, COCO-stuff, and ADE 20K. Especially, the visually appealing segmentation results demonstrate the model capability to localize objects precisely. Paper homepage: https://cvlab.postech.ac.kr/research/lazygrounding
Abstract:Online temporal action localization (On-TAL) is the task of identifying multiple action instances given a streaming video. Since existing methods take as input only a video segment of fixed size per iteration, they are limited in considering long-term context and require tuning the segment size carefully. To overcome these limitations, we propose memory-augmented transformer (MATR). MATR utilizes the memory queue that selectively preserves the past segment features, allowing to leverage long-term context for inference. We also propose a novel action localization method that observes the current input segment to predict the end time of the ongoing action and accesses the memory queue to estimate the start time of the action. Our method outperformed existing methods on two datasets, THUMOS14 and MUSES, surpassing not only TAL methods in the online setting but also some offline TAL methods.