Abstract:Learning to assemble geometric shapes into a larger target structure is a pivotal task in various practical applications. In this work, we tackle this problem by establishing local correspondences between point clouds of part shapes in both coarse- and fine-levels. To this end, we introduce Proxy Match Transform (PMT), an approximate high-order feature transform layer that enables reliable matching between mating surfaces of parts while incurring low costs in memory and computation. Building upon PMT, we introduce a new framework, dubbed Proxy Match TransformeR (PMTR), for the geometric assembly task. We evaluate the proposed PMTR on the large-scale 3D geometric shape assembly benchmark dataset of Breaking Bad and demonstrate its superior performance and efficiency compared to state-of-the-art methods. Project page: https://nahyuklee.github.io/pmtr.
Abstract:Using image as prompts for 3D generation demonstrate particularly strong performances compared to using text prompts alone, for images provide a more intuitive guidance for the 3D generation process. In this work, we delve into the potential of using multiple image prompts, instead of a single image prompt, for 3D generation. Specifically, we build on ImageDream, a novel image-prompt multi-view diffusion model, to support multi-view images as the input prompt. Our method, dubbed MultiImageDream, reveals that transitioning from a single-image prompt to multiple-image prompts enhances the performance of multi-view and 3D object generation according to various quantitative evaluation metrics and qualitative assessments. This advancement is achieved without the necessity of fine-tuning the pre-trained ImageDream multi-view diffusion model.
Abstract:Leveraging multi-view diffusion models as priors for 3D optimization have alleviated the problem of 3D consistency, e.g., the Janus face problem or the content drift problem, in zero-shot text-to-3D models. However, the 3D geometric fidelity of the output remains an unresolved issue; albeit the rendered 2D views are realistic, the underlying geometry may contain errors such as unreasonable concavities. In this work, we propose CorrespondentDream, an effective method to leverage annotation-free, cross-view correspondences yielded from the diffusion U-Net to provide additional 3D prior to the NeRF optimization process. We find that these correspondences are strongly consistent with human perception, and by adopting it in our loss design, we are able to produce NeRF models with geometries that are more coherent with common sense, e.g., more smoothed object surface, yielding higher 3D fidelity. We demonstrate the efficacy of our approach through various comparative qualitative results and a solid user study.
Abstract:Recent studies show that leveraging the match-wise relationships within the 4D correlation map yields significant improvements in establishing semantic correspondences - but at the cost of increased computation and latency. In this work, we focus on the aspect that the performance improvements of recent methods can also largely be attributed to the usage of multi-scale correlation maps, which hold various information ranging from low-level geometric cues to high-level semantic contexts. To this end, we propose HCCNet, an efficient yet effective semantic matching method which exploits the full potential of multi-scale correlation maps, while eschewing the reliance on expensive match-wise relationship mining on the 4D correlation map. Specifically, HCCNet performs feature slicing on the bottleneck features to yield a richer set of intermediate features, which are used to construct a hypercolumn correlation. HCCNet can consequently establish semantic correspondences in an effective manner by reducing the volume of conventional high-dimensional convolution or self-attention operations to efficient point-wise convolutions. HCCNet demonstrates state-of-the-art or competitive performances on the standard benchmarks of semantic matching, while incurring a notably lower latency and computation overhead compared to the existing SoTA methods.
Abstract:Learning to predict reliable characteristic orientations of 3D point clouds is an important yet challenging problem, as different point clouds of the same class may have largely varying appearances. In this work, we introduce a novel method to decouple the shape geometry and semantics of the input point cloud to achieve both stability and consistency. The proposed method integrates shape-geometry-based SO(3)-equivariant learning and shape-semantics-based SO(3)-invariant residual learning, where a final characteristic orientation is obtained by calibrating an SO(3)-equivariant orientation hypothesis using an SO(3)-invariant residual rotation. In experiments, the proposed method not only demonstrates superior stability and consistency but also exhibits state-of-the-art performances when applied to point cloud part segmentation, given randomly rotated inputs.
Abstract:Extracting discriminative local features that are invariant to imaging variations is an integral part of establishing correspondences between images. In this work, we introduce a self-supervised learning framework to extract discriminative rotation-invariant descriptors using group-equivariant CNNs. Thanks to employing group-equivariant CNNs, our method effectively learns to obtain rotation-equivariant features and their orientations explicitly, without having to perform sophisticated data augmentations. The resultant features and their orientations are further processed by group aligning, a novel invariant mapping technique that shifts the group-equivariant features by their orientations along the group dimension. Our group aligning technique achieves rotation-invariance without any collapse of the group dimension and thus eschews loss of discriminability. The proposed method is trained end-to-end in a self-supervised manner, where we use an orientation alignment loss for the orientation estimation and a contrastive descriptor loss for robust local descriptors to geometric/photometric variations. Our method demonstrates state-of-the-art matching accuracy among existing rotation-invariant descriptors under varying rotation and also shows competitive results when transferred to the task of keypoint matching and camera pose estimation.
Abstract:Establishing correspondences between images remains a challenging task, especially under large appearance changes due to different viewpoints or intra-class variations. In this work, we introduce a strong semantic image matching learner, dubbed TransforMatcher, which builds on the success of transformer networks in vision domains. Unlike existing convolution- or attention-based schemes for correspondence, TransforMatcher performs global match-to-match attention for precise match localization and dynamic refinement. To handle a large number of matches in a dense correlation map, we develop a light-weight attention architecture to consider the global match-to-match interactions. We also propose to utilize a multi-channel correlation map for refinement, treating the multi-level scores as features instead of a single score to fully exploit the richer layer-wise semantics. In experiments, TransforMatcher sets a new state of the art on SPair-71k while performing on par with existing SOTA methods on the PF-PASCAL dataset.
Abstract:Despite advances in feature representation, leveraging geometric relations is crucial for establishing reliable visual correspondences under large variations of images. In this work we introduce a Hough transform perspective on convolutional matching and propose an effective geometric matching algorithm, dubbed Convolutional Hough Matching (CHM). The method distributes similarities of candidate matches over a geometric transformation space and evaluates them in a convolutional manner. We cast it into a trainable neural layer with a semi-isotropic high-dimensional kernel, which learns non-rigid matching with a small number of interpretable parameters. To further improve the efficiency of high-dimensional voting, we also propose to use an efficient kernel decomposition with center-pivot neighbors, which significantly sparsifies the proposed semi-isotropic kernels without performance degradation. To validate the proposed techniques, we develop the neural network with CHM layers that perform convolutional matching in the space of translation and scaling. Our method sets a new state of the art on standard benchmarks for semantic visual correspondence, proving its strong robustness to challenging intra-class variations.
Abstract:Point cloud registration is the task of estimating the rigid transformation that aligns a pair of point cloud fragments. We present an efficient and robust framework for pairwise registration of real-world 3D scans, leveraging Hough voting in the 6D transformation parameter space. First, deep geometric features are extracted from a point cloud pair to compute putative correspondences. We then construct a set of triplets of correspondences to cast votes on the 6D Hough space, representing the transformation parameters in sparse tensors. Next, a fully convolutional refinement module is applied to refine the noisy votes. Finally, we identify the consensus among the correspondences from the Hough space, which we use to predict our final transformation parameters. Our method outperforms state-of-the-art methods on 3DMatch and 3DLoMatch benchmarks while achieving comparable performance on KITTI odometry dataset. We further demonstrate the generalizability of our approach by setting a new state-of-the-art on ICL-NUIM dataset, where we integrate our module into a multi-way registration pipeline.
Abstract:Data is one of the most important factors in machine learning. However, even if we have high-quality data, there is a situation in which access to the data is restricted. For example, access to the medical data from outside is strictly limited due to the privacy issues. In this case, we have to learn a model sequentially only with the data accessible in the corresponding stage. In this work, we propose a new method for preserving learned knowledge by modeling the high-level feature space and the output space to be mutually informative, and constraining feature vectors to lie in the modeled space during training. The proposed method is easy to implement as it can be applied by simply adding a reconstruction loss to an objective function. We evaluate the proposed method on CIFAR-10/100 and a chest X-ray dataset, and show benefits in terms of knowledge preservation compared to previous approaches.