Abstract:Stationary Distribution Correction Estimation (DICE) addresses the mismatch between the stationary distribution induced by a policy and the target distribution required for reliable off-policy evaluation (OPE) and policy optimization. DICE-based offline constrained RL particularly benefits from the flexibility of DICE, as it simultaneously maximizes return while estimating costs in offline settings. However, we have observed that recent approaches designed to enhance the offline RL performance of the DICE framework inadvertently undermine its ability to perform OPE, making them unsuitable for constrained RL scenarios. In this paper, we identify the root cause of this limitation: their reliance on a semi-gradient optimization, which solves a fundamentally different optimization problem and results in failures in cost estimation. Building on these insights, we propose a novel method to enable OPE and constrained RL through semi-gradient DICE. Our method ensures accurate cost estimation and achieves state-of-the-art performance on the offline constrained RL benchmark, DSRL.
Abstract:Multi-objective reinforcement learning (MORL) aims to optimize policies in the presence of conflicting objectives, where linear scalarization is commonly used to reduce vector-valued returns into scalar signals. While effective for certain preferences, this approach cannot capture fairness-oriented goals such as Nash social welfare or max-min fairness, which require nonlinear and non-additive trade-offs. Although several online algorithms have been proposed for specific fairness objectives, a unified approach for optimizing nonlinear welfare criteria in the offline setting-where learning must proceed from a fixed dataset-remains unexplored. In this work, we present FairDICE, the first offline MORL framework that directly optimizes nonlinear welfare objective. FairDICE leverages distribution correction estimation to jointly account for welfare maximization and distributional regularization, enabling stable and sample-efficient learning without requiring explicit preference weights or exhaustive weight search. Across multiple offline benchmarks, FairDICE demonstrates strong fairness-aware performance compared to existing baselines.
Abstract:The extraction of molecular structures and reaction data from scientific documents is challenging due to their varied, unstructured chemical formats and complex document layouts. To address this, we introduce MolMole, a vision-based deep learning framework that unifies molecule detection, reaction diagram parsing, and optical chemical structure recognition (OCSR) into a single pipeline for automating the extraction of chemical data directly from page-level documents. Recognizing the lack of a standard page-level benchmark and evaluation metric, we also present a testset of 550 pages annotated with molecule bounding boxes, reaction labels, and MOLfiles, along with a novel evaluation metric. Experimental results demonstrate that MolMole outperforms existing toolkits on both our benchmark and public datasets. The benchmark testset will be publicly available, and the MolMole toolkit will be accessible soon through an interactive demo on the LG AI Research website. For commercial inquiries, please contact us at \href{mailto:contact_ddu@lgresearch.ai}{contact\_ddu@lgresearch.ai}.
Abstract:Determining the 3D orientations of an object in an image, known as single-image pose estimation, is a crucial task in 3D vision applications. Existing methods typically learn 3D rotations parametrized in the spatial domain using Euler angles or quaternions, but these representations often introduce discontinuities and singularities. SO(3)-equivariant networks enable the structured capture of pose patterns with data-efficient learning, but the parametrizations in spatial domain are incompatible with their architecture, particularly spherical CNNs, which operate in the frequency domain to enhance computational efficiency. To overcome these issues, we propose a frequency-domain approach that directly predicts Wigner-D coefficients for 3D rotation regression, aligning with the operations of spherical CNNs. Our SO(3)-equivariant pose harmonics predictor overcomes the limitations of spatial parameterizations, ensuring consistent pose estimation under arbitrary rotations. Trained with a frequency-domain regression loss, our method achieves state-of-the-art results on benchmarks such as ModelNet10-SO(3) and PASCAL3D+, with significant improvements in accuracy, robustness, and data efficiency.
Abstract:In recent years, the transformer architecture has become the de facto standard for machine learning algorithms applied to natural language processing and computer vision. Despite notable evidence of successful deployment of this architecture in the context of robot learning, we claim that vanilla transformers do not fully exploit the structure of the robot learning problem. Therefore, we propose Body Transformer (BoT), an architecture that leverages the robot embodiment by providing an inductive bias that guides the learning process. We represent the robot body as a graph of sensors and actuators, and rely on masked attention to pool information throughout the architecture. The resulting architecture outperforms the vanilla transformer, as well as the classical multilayer perceptron, in terms of task completion, scaling properties, and computational efficiency when representing either imitation or reinforcement learning policies. Additional material including the open-source code is available at https://sferrazza.cc/bot_site.
Abstract:The Value Iteration (VI) algorithm is an iterative procedure to compute the value function of a Markov decision process, and is the basis of many reinforcement learning (RL) algorithms as well. As the error convergence rate of VI as a function of iteration $k$ is $O(\gamma^k)$, it is slow when the discount factor $\gamma$ is close to $1$. To accelerate the computation of the value function, we propose Deflated Dynamics Value Iteration (DDVI). DDVI uses matrix splitting and matrix deflation techniques to effectively remove (deflate) the top $s$ dominant eigen-structure of the transition matrix $\mathcal{P}^{\pi}$. We prove that this leads to a $\tilde{O}(\gamma^k |\lambda_{s+1}|^k)$ convergence rate, where $\lambda_{s+1}$is $(s+1)$-th largest eigenvalue of the dynamics matrix. We then extend DDVI to the RL setting and present Deflated Dynamics Temporal Difference (DDTD) algorithm. We empirically show the effectiveness of the proposed algorithms.
Abstract:We consider off-policy evaluation (OPE) of deterministic target policies for reinforcement learning (RL) in environments with continuous action spaces. While it is common to use importance sampling for OPE, it suffers from high variance when the behavior policy deviates significantly from the target policy. In order to address this issue, some recent works on OPE proposed in-sample learning with importance resampling. Yet, these approaches are not applicable to deterministic target policies for continuous action spaces. To address this limitation, we propose to relax the deterministic target policy using a kernel and learn the kernel metrics that minimize the overall mean squared error of the estimated temporal difference update vector of an action value function, where the action value function is used for policy evaluation. We derive the bias and variance of the estimation error due to this relaxation and provide analytic solutions for the optimal kernel metric. In empirical studies using various test domains, we show that the OPE with in-sample learning using the kernel with optimized metric achieves significantly improved accuracy than other baselines.
Abstract:One of the main challenges in offline Reinforcement Learning (RL) is the distribution shift that arises from the learned policy deviating from the data collection policy. This is often addressed by avoiding out-of-distribution (OOD) actions during policy improvement as their presence can lead to substantial performance degradation. This challenge is amplified in the offline Multi-Agent RL (MARL) setting since the joint action space grows exponentially with the number of agents. To avoid this curse of dimensionality, existing MARL methods adopt either value decomposition methods or fully decentralized training of individual agents. However, even when combined with standard conservatism principles, these methods can still result in the selection of OOD joint actions in offline MARL. To this end, we introduce AlberDICE, an offline MARL algorithm that alternatively performs centralized training of individual agents based on stationary distribution optimization. AlberDICE circumvents the exponential complexity of MARL by computing the best response of one agent at a time while effectively avoiding OOD joint action selection. Theoretically, we show that the alternating optimization procedure converges to Nash policies. In the experiments, we demonstrate that AlberDICE significantly outperforms baseline algorithms on a standard suite of MARL benchmarks.
Abstract:We first raise and tackle ``time synchronization'' issue between the agent and the environment in non-stationary reinforcement learning (RL), a crucial factor hindering its real-world applications. In reality, environmental changes occur over wall-clock time ($\mathfrak{t}$) rather than episode progress ($k$), where wall-clock time signifies the actual elapsed time within the fixed duration $\mathfrak{t} \in [0, T]$. In existing works, at episode $k$, the agent rollouts a trajectory and trains a policy before transitioning to episode $k+1$. In the context of the time-desynchronized environment, however, the agent at time $\mathfrak{t}_k$ allocates $\Delta \mathfrak{t}$ for trajectory generation and training, subsequently moves to the next episode at $\mathfrak{t}_{k+1}=\mathfrak{t}_{k}+\Delta \mathfrak{t}$. Despite a fixed total episode ($K$), the agent accumulates different trajectories influenced by the choice of \textit{interaction times} ($\mathfrak{t}_1,\mathfrak{t}_2,...,\mathfrak{t}_K$), significantly impacting the sub-optimality gap of policy. We propose a Proactively Synchronizing Tempo (ProST) framework that computes optimal $\{ \mathfrak{t}_1,\mathfrak{t}_2,...,\mathfrak{t}_K \} (= \{ \mathfrak{t} \}_{1:K})$. Our main contribution is that we show optimal $\{ \mathfrak{t} \}_{1:K}$ trades-off between the policy training time (agent tempo) and how fast the environment changes (environment tempo). Theoretically, this work establishes an optimal $\{ \mathfrak{t} \}_{1:K}$ as a function of the degree of the environment's non-stationarity while also achieving a sublinear dynamic regret. Our experimental evaluation on various high dimensional non-stationary environments shows that the ProST framework achieves a higher online return at optimal $\{ \mathfrak{t} \}_{1:K}$ than the existing methods.
Abstract:Value Iteration (VI) is foundational to the theory and practice of modern reinforcement learning, and it is known to converge at a $\mathcal{O}(\gamma^k)$-rate, where $\gamma$ is the discount factor. Surprisingly, however, the optimal rate for the VI setup was not known, and finding a general acceleration mechanism has been an open problem. In this paper, we present the first accelerated VI for both the Bellman consistency and optimality operators. Our method, called Anc-VI, is based on an \emph{anchoring} mechanism (distinct from Nesterov's acceleration), and it reduces the Bellman error faster than standard VI. In particular, Anc-VI exhibits a $\mathcal{O}(1/k)$-rate for $\gamma\approx 1$ or even $\gamma=1$, while standard VI has rate $\mathcal{O}(1)$ for $\gamma\ge 1-1/k$, where $k$ is the iteration count. We also provide a complexity lower bound matching the upper bound up to a constant factor of $4$, thereby establishing optimality of the accelerated rate of Anc-VI. Finally, we show that the anchoring mechanism provides the same benefit in the approximate VI and Gauss--Seidel VI setups as well.