Abstract:Reinforcement learning (RL) algorithms aim to balance exploiting the current best strategy with exploring new options that could lead to higher rewards. Most common RL algorithms use undirected exploration, i.e., select random sequences of actions. Exploration can also be directed using intrinsic rewards, such as curiosity or model epistemic uncertainty. However, effectively balancing task and intrinsic rewards is challenging and often task-dependent. In this work, we introduce a framework, MaxInfoRL, for balancing intrinsic and extrinsic exploration. MaxInfoRL steers exploration towards informative transitions, by maximizing intrinsic rewards such as the information gain about the underlying task. When combined with Boltzmann exploration, this approach naturally trades off maximization of the value function with that of the entropy over states, rewards, and actions. We show that our approach achieves sublinear regret in the simplified setting of multi-armed bandits. We then apply this general formulation to a variety of off-policy model-free RL methods for continuous state-action spaces, yielding novel algorithms that achieve superior performance across hard exploration problems and complex scenarios such as visual control tasks.
Abstract:Reinforcement learning (RL) is ubiquitous in the development of modern AI systems. However, state-of-the-art RL agents require extensive, and potentially unsafe, interactions with their environments to learn effectively. These limitations confine RL agents to simulated environments, hindering their ability to learn directly in real-world settings. In this work, we present ActSafe, a novel model-based RL algorithm for safe and efficient exploration. ActSafe learns a well-calibrated probabilistic model of the system and plans optimistically w.r.t. the epistemic uncertainty about the unknown dynamics, while enforcing pessimism w.r.t. the safety constraints. Under regularity assumptions on the constraints and dynamics, we show that ActSafe guarantees safety during learning while also obtaining a near-optimal policy in finite time. In addition, we propose a practical variant of ActSafe that builds on latest model-based RL advancements and enables safe exploration even in high-dimensional settings such as visual control. We empirically show that ActSafe obtains state-of-the-art performance in difficult exploration tasks on standard safe deep RL benchmarks while ensuring safety during learning.
Abstract:We present an approach to learn general robot manipulation priors from 3D hand-object interaction trajectories. We build a framework to use in-the-wild videos to generate sensorimotor robot trajectories. We do so by lifting both the human hand and the manipulated object in a shared 3D space and retargeting human motions to robot actions. Generative modeling on this data gives us a task-agnostic base policy. This policy captures a general yet flexible manipulation prior. We empirically demonstrate that finetuning this policy, with both reinforcement learning (RL) and behavior cloning (BC), enables sample-efficient adaptation to downstream tasks and simultaneously improves robustness and generalizability compared to prior approaches. Qualitative experiments are available at: \url{https://hgaurav2k.github.io/hop/}.
Abstract:In recent years, the transformer architecture has become the de facto standard for machine learning algorithms applied to natural language processing and computer vision. Despite notable evidence of successful deployment of this architecture in the context of robot learning, we claim that vanilla transformers do not fully exploit the structure of the robot learning problem. Therefore, we propose Body Transformer (BoT), an architecture that leverages the robot embodiment by providing an inductive bias that guides the learning process. We represent the robot body as a graph of sensors and actuators, and rely on masked attention to pool information throughout the architecture. The resulting architecture outperforms the vanilla transformer, as well as the classical multilayer perceptron, in terms of task completion, scaling properties, and computational efficiency when representing either imitation or reinforcement learning policies. Additional material including the open-source code is available at https://sferrazza.cc/bot_site.
Abstract:Humanoid robots hold great promise in assisting humans in diverse environments and tasks, due to their flexibility and adaptability leveraging human-like morphology. However, research in humanoid robots is often bottlenecked by the costly and fragile hardware setups. To accelerate algorithmic research in humanoid robots, we present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands and a variety of challenging whole-body manipulation and locomotion tasks. Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning baseline achieves superior performance when supported by robust low-level policies, such as walking or reaching. With HumanoidBench, we provide the robotics community with a platform to identify the challenges arising when solving diverse tasks with humanoid robots, facilitating prompt verification of algorithms and ideas. The open-source code is available at https://sferrazza.cc/humanoidbench_site.
Abstract:Distributed tactile sensing for multi-force detection is crucial for various aerial robot interaction tasks. However, current contact sensing solutions on drones only exploit single end-effector sensors and cannot provide distributed multi-contact sensing. Designed to be easily mounted at the bottom of a drone, we propose an optical tactile sensor that features a large and curved soft sensing surface, a hollow structure and a new illumination system. Even when spaced only 2 cm apart, multiple contacts can be detected simultaneously using our software pipeline, which provides real-world quantities of 3D contact locations (mm) and 3D force vectors (N), with an accuracy of 1.5 mm and 0.17 N respectively. We demonstrate the sensor's applicability and reliability onboard and in real-time with two demos related to i) the estimation of the compliance of different perches and subsequent re-alignment and landing on the stiffer one, and ii) the mapping of sparse obstacles. The implementation of our distributed tactile sensor represents a significant step towards attaining the full potential of drones as versatile robots capable of interacting with and navigating within complex environments.
Abstract:Humans rely on the synergy of their senses for most essential tasks. For tasks requiring object manipulation, we seamlessly and effectively exploit the complementarity of our senses of vision and touch. This paper draws inspiration from such capabilities and aims to find a systematic approach to fuse visual and tactile information in a reinforcement learning setting. We propose Masked Multimodal Learning (M3L), which jointly learns a policy and visual-tactile representations based on masked autoencoding. The representations jointly learned from vision and touch improve sample efficiency, and unlock generalization capabilities beyond those achievable through each of the senses separately. Remarkably, representations learned in a multimodal setting also benefit vision-only policies at test time. We evaluate M3L on three simulated environments with both visual and tactile observations: robotic insertion, door opening, and dexterous in-hand manipulation, demonstrating the benefits of learning a multimodal policy. Code and videos of the experiments are available at https://sferrazza.cc/m3l_site.
Abstract:Using learned reward functions (LRFs) as a means to solve sparse-reward reinforcement learning (RL) tasks has yielded some steady progress in task-complexity through the years. In this work, we question whether today's LRFs are best-suited as a direct replacement for task rewards. Instead, we propose leveraging the capabilities of LRFs as a pretraining signal for RL. Concretely, we propose $\textbf{LA}$nguage Reward $\textbf{M}$odulated $\textbf{P}$retraining (LAMP) which leverages the zero-shot capabilities of Vision-Language Models (VLMs) as a $\textit{pretraining}$ utility for RL as opposed to a downstream task reward. LAMP uses a frozen, pretrained VLM to scalably generate noisy, albeit shaped exploration rewards by computing the contrastive alignment between a highly diverse collection of language instructions and the image observations of an agent in its pretraining environment. LAMP optimizes these rewards in conjunction with standard novelty-seeking exploration rewards with reinforcement learning to acquire a language-conditioned, pretrained policy. Our VLM pretraining approach, which is a departure from previous attempts to use LRFs, can warmstart sample-efficient learning on robot manipulation tasks in RLBench.
Abstract:Learning from human preferences is important for language models to be helpful and useful for humans, and to align with human and social values. Prior work have achieved remarkable successes by learning from human feedback to understand and follow instructions. Nonetheless, these methods are either founded on hand-picked model generations that are favored by human annotators, rendering them ineffective in terms of data utilization and challenging to apply in general, or they depend on reward functions and reinforcement learning, which are prone to imperfect reward function and extremely challenging to optimize. In this work, we propose a novel technique, Chain of Hindsight, that is easy to optimize and can learn from any form of feedback, regardless of its polarity. Our idea is inspired by how humans learn from extensive feedback presented in the form of languages. We convert all types of feedback into sentences, which are then used to fine-tune the model, allowing us to take advantage of the language comprehension capabilities of language models. We condition the model on a sequence of model generations paired with feedback. By doing so, models are trained to generate outputs based on feedback, and models can learn to identify and correct negative attributes or errors. Applying our method to large language models, we observed that Chain of Hindsight significantly surpasses previous methods in aligning language models with human preferences. We observed significant improvements on summarization and dialogue tasks and our approach is markedly preferred in human evaluations.
Abstract:Grasping objects whose physical properties are unknown is still a great challenge in robotics. Most solutions rely entirely on visual data to plan the best grasping strategy. However, to match human abilities and be able to reliably pick and hold unknown objects, the integration of an artificial sense of touch in robotic systems is pivotal. This paper describes a novel model-based slip detection pipeline that can predict possibly failing grasps in real-time and signal a necessary increase in grip force. As such, the slip detector does not rely on manually collected data, but exploits physics to generalize across different tasks. To evaluate the approach, a state-of-the-art vision-based tactile sensor that accurately estimates distributed forces was integrated into a grasping setup composed of a six degrees-of-freedom cobot and a two-finger gripper. Results show that the system can reliably predict slip while manipulating objects of different shapes, materials, and weights. The sensor can detect both translational and rotational slip in various scenarios, making it suitable to improve the stability of a grasp.