Abstract:Spoken language understanding (SLU) is a structure prediction task in the field of speech. Recently, many works on SLU that treat it as a sequence-to-sequence task have achieved great success. However, This method is not suitable for simultaneous speech recognition and understanding. In this paper, we propose a joint speech recognition and structure learning framework (JSRSL), an end-to-end SLU model based on span, which can accurately transcribe speech and extract structured content simultaneously. We conduct experiments on name entity recognition and intent classification using the Chinese dataset AISHELL-NER and the English dataset SLURP. The results show that our proposed method not only outperforms the traditional sequence-to-sequence method in both transcription and extraction capabilities but also achieves state-of-the-art performance on the two datasets.
Abstract:Large Language Models (LLMs) have revolutionized text generation, making detecting machine-generated text increasingly challenging. Although past methods have achieved good performance on detecting pure machine-generated text, those detectors have poor performance on distinguishing machine-revised text (rewriting, expansion, and polishing), which can have only minor changes from its original human prompt. As the content of text may originate from human prompts, detecting machine-revised text often involves identifying distinctive machine styles, e.g., worded favored by LLMs. However, existing methods struggle to detect machine-style phrasing hidden within the content contributed by humans. We propose the "Imitate Before Detect" (ImBD) approach, which first imitates the machine-style token distribution, and then compares the distribution of the text to be tested with the machine-style distribution to determine whether the text has been machine-revised. To this end, we introduce style preference optimization (SPO), which aligns a scoring LLM model to the preference of text styles generated by machines. The aligned scoring model is then used to calculate the style-conditional probability curvature (Style-CPC), quantifying the log probability difference between the original and conditionally sampled texts for effective detection. We conduct extensive comparisons across various scenarios, encompassing text revisions by six LLMs, four distinct text domains, and three machine revision types. Compared to existing state-of-the-art methods, our method yields a 13% increase in AUC for detecting text revised by open-source LLMs, and improves performance by 5% and 19% for detecting GPT-3.5 and GPT-4o revised text, respectively. Notably, our method surpasses the commercially trained GPT-Zero with just $1,000$ samples and five minutes of SPO, demonstrating its efficiency and effectiveness.
Abstract:The image-based multimodal automatic speech recognition (ASR) model enhances speech recognition performance by incorporating audio-related image. However, some works suggest that introducing image information to model does not help improving ASR performance. In this paper, we propose a novel approach effectively utilizing audio-related image information and set up VHASR, a multimodal speech recognition system that uses vision as hotwords to strengthen the model's speech recognition capability. Our system utilizes a dual-stream architecture, which firstly transcribes the text on the two streams separately, and then combines the outputs. We evaluate the proposed model on four datasets: Flickr8k, ADE20k, COCO, and OpenImages. The experimental results show that VHASR can effectively utilize key information in images to enhance the model's speech recognition ability. Its performance not only surpasses unimodal ASR, but also achieves SOTA among existing image-based multimodal ASR.
Abstract:Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities. In-Context Learning (ICL) and Parameter-Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting LLMs to downstream tasks. ICL typically constructs a few-shot learning scenario, either manually or by setting up a Retrieval-Augmented Generation (RAG) system, helping models quickly grasp domain knowledge or question-answering patterns without changing model parameters. However, this approach involves trade-offs, such as slower inference speed and increased space occupancy. PEFT assists the model in adapting to tasks through minimal parameter modifications, but the training process still demands high hardware requirements, even with a small number of parameters involved. To address these challenges, we propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning, maintaining low inference costs. RTD constructs a reference datastore from the provided training examples and optimizes the LLM's final vocabulary distribution by flexibly selecting suitable references based on the input, resulting in more trustable responses and enabling the model to adapt to downstream tasks at a low cost. Experimental evaluations on various LLMs using different benchmarks demonstrate that RTD establishes a new paradigm for augmenting models to downstream tasks. Furthermore, our method exhibits strong orthogonality with traditional methods, allowing for concurrent usage.
Abstract:Chinese Spelling Correction (CSC) stands as a foundational Natural Language Processing (NLP) task, which primarily focuses on the correction of erroneous characters in Chinese texts. Certain existing methodologies opt to disentangle the error correction process, employing an additional error detector to pinpoint error positions. However, owing to the inherent performance limitations of error detector, precision and recall are like two sides of the coin which can not be both facing up simultaneously. Furthermore, it is also worth investigating how the error position information can be judiciously applied to assist the error correction. In this paper, we introduce a novel approach based on error detector-corrector framework. Our detector is designed to yield two error detection results, each characterized by high precision and recall. Given that the occurrence of errors is context-dependent and detection outcomes may be less precise, we incorporate the error detection results into the CSC task using an innovative feature fusion strategy and a selective masking strategy. Empirical experiments conducted on mainstream CSC datasets substantiate the efficacy of our proposed method.
Abstract:Retrosynthesis analysis is pivotal yet challenging in drug discovery and organic chemistry. Despite the proliferation of computational tools over the past decade, AI-based systems often fall short in generalizing across diverse reaction types and exploring alternative synthetic pathways. This paper presents BatGPT-Chem, a large language model with 15 billion parameters, tailored for enhanced retrosynthesis prediction. Integrating chemical tasks via a unified framework of natural language and SMILES notation, this approach synthesizes extensive instructional data from an expansive chemical database. Employing both autoregressive and bidirectional training techniques across over one hundred million instances, BatGPT-Chem captures a broad spectrum of chemical knowledge, enabling precise prediction of reaction conditions and exhibiting strong zero-shot capabilities. Superior to existing AI methods, our model demonstrates significant advancements in generating effective strategies for complex molecules, as validated by stringent benchmark tests. BatGPT-Chem not only boosts the efficiency and creativity of retrosynthetic analysis but also establishes a new standard for computational tools in synthetic design. This development empowers chemists to adeptly address the synthesis of novel compounds, potentially expediting the innovation cycle in drug manufacturing and materials science. We release our trial platform at \url{https://www.batgpt.net/dapp/chem}.
Abstract:Large Language Models (LLMs), epitomized by ChatGPT' s release in late 2022, have revolutionized various industries with their advanced language comprehension. However, their efficiency is challenged by the Transformer architecture' s struggle with handling long texts. KV-Cache has emerged as a pivotal solution to this issue, converting the time complexity of token generation from quadratic to linear, albeit with increased GPU memory overhead proportional to conversation length. With the development of the LLM community and academia, various KV-Cache compression methods have been proposed. In this review, we dissect the various properties of KV-Cache and elaborate on various methods currently used to optimize the KV-Cache space usage of LLMs. These methods span the pre-training phase, deployment phase, and inference phase, and we summarize the commonalities and differences among these methods. Additionally, we list some metrics for evaluating the long-text capabilities of large language models, from both efficiency and capability perspectives. Our review thus sheds light on the evolving landscape of LLM optimization, offering insights into future advancements in this dynamic field.
Abstract:Semantic entity recognition is an important task in the field of visually-rich document understanding. It distinguishes the semantic types of text by analyzing the position relationship between text nodes and the relation between text content. The existing document understanding models mainly focus on entity categories while ignoring the extraction of entity boundaries. We build a novel hypergraph attention document semantic entity recognition framework, HGA, which uses hypergraph attention to focus on entity boundaries and entity categories at the same time. It can conduct a more detailed analysis of the document text representation analyzed by the upstream model and achieves a better performance of semantic information. We apply this method on the basis of GraphLayoutLM to construct a new semantic entity recognition model HGALayoutLM. Our experiment results on FUNSD, CORD, XFUND and SROIE show that our method can effectively improve the performance of semantic entity recognition tasks based on the original model. The results of HGALayoutLM on FUNSD and XFUND reach the new state-of-the-art results.
Abstract:Transformer, a deep neural network architecture, has long dominated the field of natural language processing and beyond. Nevertheless, the recent introduction of Mamba challenges its supremacy, sparks considerable interest among researchers, and gives rise to a series of Mamba-based models that have exhibited notable potential. This survey paper orchestrates a comprehensive discussion, diving into essential research dimensions, covering: (i) the functioning of the Mamba mechanism and its foundation on the principles of structured state space models; (ii) the proposed improvements and the integration of Mamba with various networks, exploring its potential as a substitute for Transformers; (iii) the combination of Transformers and Mamba to compensate for each other's shortcomings. We have also made efforts to interpret Mamba and Transformer in the framework of kernel functions, allowing for a comparison of their mathematical nature within a unified context. Our paper encompasses the vast majority of improvements related to Mamba to date.
Abstract:Benchmark plays a pivotal role in assessing the advancements of large language models (LLMs). While numerous benchmarks have been proposed to evaluate LLMs' capabilities, there is a notable absence of a dedicated benchmark for assessing their musical abilities. To address this gap, we present ZIQI-Eval, a comprehensive and large-scale music benchmark specifically designed to evaluate the music-related capabilities of LLMs. ZIQI-Eval encompasses a wide range of questions, covering 10 major categories and 56 subcategories, resulting in over 14,000 meticulously curated data entries. By leveraging ZIQI-Eval, we conduct a comprehensive evaluation over 16 LLMs to evaluate and analyze LLMs' performance in the domain of music. Results indicate that all LLMs perform poorly on the ZIQI-Eval benchmark, suggesting significant room for improvement in their musical capabilities. With ZIQI-Eval, we aim to provide a standardized and robust evaluation framework that facilitates a comprehensive assessment of LLMs' music-related abilities. The dataset is available at GitHub\footnote{https://github.com/zcli-charlie/ZIQI-Eval} and HuggingFace\footnote{https://huggingface.co/datasets/MYTH-Lab/ZIQI-Eval}.