Abstract:Effective performance profiling and analysis are essential for optimizing training and inference of deep learning models, especially given the growing complexity of heterogeneous computing environments. However, existing tools often lack the capability to provide comprehensive program context information and performance optimization insights for sophisticated interactions between CPUs and GPUs. This paper introduces DeepContext, a novel profiler that links program contexts across high-level Python code, deep learning frameworks, underlying libraries written in C/C++, as well as device code executed on GPUs. DeepContext incorporates measurements of both coarse- and fine-grained performance metrics for major deep learning frameworks, such as PyTorch and JAX, and is compatible with GPUs from both Nvidia and AMD, as well as various CPU architectures, including x86 and ARM. In addition, DeepContext integrates a novel GUI that allows users to quickly identify hotpots and an innovative automated performance analyzer that suggests users with potential optimizations based on performance metrics and program context. Through detailed use cases, we demonstrate how DeepContext can help users identify and analyze performance issues to enable quick and effective optimization of deep learning workloads. We believe Deep Context is a valuable tool for users seeking to optimize complex deep learning workflows across multiple compute environments.
Abstract:Benchmark plays a pivotal role in assessing the advancements of large language models (LLMs). While numerous benchmarks have been proposed to evaluate LLMs' capabilities, there is a notable absence of a dedicated benchmark for assessing their musical abilities. To address this gap, we present ZIQI-Eval, a comprehensive and large-scale music benchmark specifically designed to evaluate the music-related capabilities of LLMs. ZIQI-Eval encompasses a wide range of questions, covering 10 major categories and 56 subcategories, resulting in over 14,000 meticulously curated data entries. By leveraging ZIQI-Eval, we conduct a comprehensive evaluation over 16 LLMs to evaluate and analyze LLMs' performance in the domain of music. Results indicate that all LLMs perform poorly on the ZIQI-Eval benchmark, suggesting significant room for improvement in their musical capabilities. With ZIQI-Eval, we aim to provide a standardized and robust evaluation framework that facilitates a comprehensive assessment of LLMs' music-related abilities. The dataset is available at GitHub\footnote{https://github.com/zcli-charlie/ZIQI-Eval} and HuggingFace\footnote{https://huggingface.co/datasets/MYTH-Lab/ZIQI-Eval}.
Abstract:Effective weed control plays a crucial role in optimizing crop yield and enhancing agricultural product quality. However, the reliance on herbicide application not only poses a critical threat to the environment but also promotes the emergence of resistant weeds. Fortunately, recent advances in precision weed management enabled by ML and DL provide a sustainable alternative. Despite great progress, existing algorithms are mainly developed based on supervised learning approaches, which typically demand large-scale datasets with manual-labeled annotations, which is time-consuming and labor-intensive. As such, label-efficient learning methods, especially semi-supervised learning, have gained increased attention in the broader domain of computer vision and have demonstrated promising performance. These methods aim to utilize a small number of labeled data samples along with a great number of unlabeled samples to develop high-performing models comparable to the supervised learning counterpart trained on a large amount of labeled data samples. In this study, we assess the effectiveness of a semi-supervised learning framework for multi-class weed detection, employing two well-known object detection frameworks, namely FCOS and Faster-RCNN. Specifically, we evaluate a generalized student-teacher framework with an improved pseudo-label generation module to produce reliable pseudo-labels for the unlabeled data. To enhance generalization, an ensemble student network is employed to facilitate the training process. Experimental results show that the proposed approach is able to achieve approximately 76\% and 96\% detection accuracy as the supervised methods with only 10\% of labeled data in CottenWeedDet3 and CottonWeedDet12, respectively. We offer access to the source code, contributing a valuable resource for ongoing semi-supervised learning research in weed detection and beyond.
Abstract:The first step to apply deep learning techniques for symbolic music understanding is to transform musical pieces (mainly in MIDI format) into sequences of predefined tokens like note pitch, note velocity, and chords. Subsequently, the sequences are fed into a neural sequence model to accomplish specific tasks. Music sequences exhibit strong correlations between adjacent elements, making them prime candidates for N-gram techniques from Natural Language Processing (NLP). Consider classical piano music: specific melodies might recur throughout a piece, with subtle variations each time. In this paper, we propose a novel method, NG-Midiformer, for understanding symbolic music sequences that leverages the N-gram approach. Our method involves first processing music pieces into word-like sequences with our proposed unsupervised compoundation, followed by using our N-gram Transformer encoder, which can effectively incorporate N-gram information to enhance the primary encoder part for better understanding of music sequences. The pre-training process on large-scale music datasets enables the model to thoroughly learn the N-gram information contained within music sequences, and subsequently apply this information for making inferences during the fine-tuning stage. Experiment on various datasets demonstrate the effectiveness of our method and achieved state-of-the-art performance on a series of music understanding downstream tasks. The code and model weights will be released at https://github.com/CinqueOrigin/NG-Midiformer.
Abstract:Soybeans are a critical source of food, protein and oil, and thus have received extensive research aimed at enhancing their yield, refining cultivation practices, and advancing soybean breeding techniques. Within this context, soybean pod counting plays an essential role in understanding and optimizing production. Despite recent advancements, the development of a robust pod-counting algorithm capable of performing effectively in real-field conditions remains a significant challenge This paper presents a pioneering work of accurate soybean pod counting utilizing unmanned aerial vehicle (UAV) images captured from actual soybean fields in Michigan, USA. Specifically, this paper presents SoybeanNet, a novel point-based counting network that harnesses powerful transformer backbones for simultaneous soybean pod counting and localization with high accuracy. In addition, a new dataset of UAV-acquired images for soybean pod counting was created and open-sourced, consisting of 113 drone images with more than 260k manually annotated soybean pods captured under natural lighting conditions. Through comprehensive evaluations, SoybeanNet demonstrated superior performance over five state-of-the-art approaches when tested on the collected images. Remarkably, SoybeanNet achieved a counting accuracy of $84.51\%$ when tested on the testing dataset, attesting to its efficacy in real-world scenarios. The publication also provides both the source code (\url{https://github.com/JiajiaLi04/Soybean-Pod-Counting-from-UAV-Images}) and the labeled soybean dataset (\url{https://www.kaggle.com/datasets/jiajiali/uav-based-soybean-pod-images}), offering a valuable resource for future research endeavors in soybean pod counting and related fields.
Abstract:The past decade has witnessed the rapid development of ML and DL methodologies in agricultural systems, showcased by great successes in variety of agricultural applications. However, these conventional ML/DL models have certain limitations: They heavily rely on large, costly-to-acquire labeled datasets for training, require specialized expertise for development and maintenance, and are mostly tailored for specific tasks, thus lacking generalizability. Recently, foundation models have demonstrated remarkable successes in language and vision tasks across various domains. These models are trained on a vast amount of data from multiple domains and modalities. Once trained, they can accomplish versatile tasks with just minor fine-tuning and minimal task-specific labeled data. Despite their proven effectiveness and huge potential, there has been little exploration of applying FMs to agriculture fields. Therefore, this study aims to explore the potential of FMs in the field of smart agriculture. In particular, we present conceptual tools and technical background to facilitate the understanding of the problem space and uncover new research directions in this field. To this end, we first review recent FMs in the general computer science domain and categorize them into four categories: language FMs, vision FMs, multimodal FMs, and reinforcement learning FMs. Subsequently, we outline the process of developing agriculture FMs and discuss their potential applications in smart agriculture. We also discuss the unique challenges associated with developing AFMs, including model training, validation, and deployment. Through this study, we contribute to the advancement of AI in agriculture by introducing AFMs as a promising paradigm that can significantly mitigate the reliance on extensive labeled datasets and enhance the efficiency, effectiveness, and generalization of agricultural AI systems.
Abstract:Objective: COVID-19 has spread worldwide and made a huge influence across the world. Modeling the infectious spread situation of COVID-19 is essential to understand the current condition and to formulate intervention measurements. Epidemiological equations based on the SEIR model simulate disease development. The traditional parameter estimation method to solve SEIR equations could not precisely fit real-world data due to different situations, such as social distancing policies and intervention strategies. Additionally, learning-based models achieve outstanding fitting performance, but cannot visualize mechanisms. Methods: Thus, we propose a deep dynamic epidemiological (DDE) method that combines epidemiological equations and deep-learning advantages to obtain high accuracy and visualization. The DDE contains deep networks to fit the effect function to simulate the ever-changing situations based on the neural ODE method in solving variants' equations, ensuring the fitting performance of multi-level areas. Results: We introduce four SEIR variants to fit different situations in different countries and regions. We compare our DDE method with traditional parameter estimation methods (Nelder-Mead, BFGS, Powell, Truncated Newton Conjugate-Gradient, Neural ODE) in fitting the real-world data in the cases of countries (the USA, Columbia, South Africa) and regions (Wuhan in China, Piedmont in Italy). Our DDE method achieves the best Mean Square Error and Pearson coefficient in all five areas. Further, compared with the state-of-art learning-based approaches, the DDE outperforms all techniques, including LSTM, RNN, GRU, Random Forest, Extremely Random Trees, and Decision Tree. Conclusion: DDE presents outstanding predictive ability and visualized display of the changes in infection rates in different regions and countries.
Abstract:The past decade has witnessed many great successes of machine learning (ML) and deep learning (DL) applications in agricultural systems, including weed control, plant disease diagnosis, agricultural robotics, and precision livestock management. Despite tremendous progresses, one downside of such ML/DL models is that they generally rely on large-scale labeled datasets for training, and the performance of such models is strongly influenced by the size and quality of available labeled data samples. In addition, collecting, processing, and labeling such large-scale datasets is extremely costly and time-consuming, partially due to the rising cost in human labor. Therefore, developing label-efficient ML/DL methods for agricultural applications has received significant interests among researchers and practitioners. In fact, there are more than 50 papers on developing and applying deep-learning-based label-efficient techniques to address various agricultural problems since 2016, which motivates the authors to provide a timely and comprehensive review of recent label-efficient ML/DL methods in agricultural applications. To this end, we first develop a principled taxonomy to organize these methods according to the degree of supervision, including weak supervision (i.e., active learning and semi-/weakly- supervised learning), and no supervision (i.e., un-/self- supervised learning), supplemented by representative state-of-the-art label-efficient ML/DL methods. In addition, a systematic review of various agricultural applications exploiting these label-efficient algorithms, such as precision agriculture, plant phenotyping, and postharvest quality assessment, is presented. Finally, we discuss the current problems and challenges, as well as future research directions. A well-classified paper list can be accessed at https://github.com/DongChen06/Label-efficient-in-Agriculture.
Abstract:Modern IT system operation demands the integration of system software and hardware metrics. As a result, it generates a massive amount of data, which can be potentially used to make data-driven operational decisions. In the basic form, the decision model needs to monitor a large set of machine data, such as CPU utilization, allocated memory, disk and network latency, and predicts the system metrics to prevent performance degradation. Nevertheless, building an effective prediction model in this scenario is rather challenging as the model has to accurately capture the long-range coupling dependency in the Multivariate Time-Series (MTS). Moreover, this model needs to have low computational complexity and can scale efficiently to the dimension of data available. In this paper, we propose a highly efficient model named HigeNet to predict the long-time sequence time series. We have deployed the HigeNet on production in the D-matrix platform. We also provide offline evaluations on several publicly available datasets as well as one online dataset to demonstrate the model's efficacy. The extensive experiments show that training time, resource usage and accuracy of the model are found to be significantly better than five state-of-the-art competing models.
Abstract:Recent single-channel speech enhancement methods usually convert waveform to the time-frequency domain and use magnitude/complex spectrum as the optimizing target. However, both magnitude-spectrum-based methods and complex-spectrum-based methods have their respective pros and cons. In this paper, we propose a unified two-branch framework to foster strengths and circumvent weaknesses of different paradigms. The proposed framework could take full advantage of the apparent spectral regularity in magnitude spectrogram and break the bottleneck that magnitude-based methods have suffered. Within each branch, we use collaborative expert block and its variants as substitutes for regular convolution layers. Experiments on TIMIT benchmark demonstrate that our method is superior to existing state-of-the-art ones.