Abstract:Existing multilingual neural machine translation (MNMT) approaches mainly focus on improving models with the encoder-decoder architecture to translate multiple languages. However, decoder-only architecture has been explored less in MNMT due to its underperformance when trained on parallel data solely. In this work, we attribute the issue of the decoder-only architecture to its lack of language transfer capability. Specifically, the decoder-only architecture is insufficient in encoding source tokens with the target language features. We propose dividing the decoding process into two stages so that target tokens are explicitly excluded in the first stage to implicitly boost the transfer capability across languages. Additionally, we impose contrastive learning on translation instructions, resulting in improved performance in zero-shot translation. We conduct experiments on TED-19 and OPUS-100 datasets, considering both training from scratch and fine-tuning scenarios. Experimental results show that, compared to the encoder-decoder architecture, our methods not only perform competitively in supervised translations but also achieve improvements of up to 3.39 BLEU, 6.99 chrF++, 3.22 BERTScore, and 4.81 COMET in zero-shot translations.
Abstract:Understanding representation transfer in multilingual neural machine translation can reveal the representational issue causing the zero-shot translation deficiency. In this work, we introduce the identity pair, a sentence translated into itself, to address the lack of the base measure in multilingual investigations, as the identity pair represents the optimal state of representation among any language transfers. In our analysis, we demonstrate that the encoder transfers the source language to the representational subspace of the target language instead of the language-agnostic state. Thus, the zero-shot translation deficiency arises because representations are entangled with other languages and are not transferred effectively to the target language. Based on our findings, we propose two methods: 1) low-rank language-specific embedding at the encoder, and 2) language-specific contrastive learning of the representation at the decoder. The experimental results on Europarl-15, TED-19, and OPUS-100 datasets show that our methods substantially enhance the performance of zero-shot translations by improving language transfer capacity, thereby providing practical evidence to support our conclusions.
Abstract:Lightweight design of Convolutional Neural Networks (CNNs) requires co-design efforts in the model architectures and compression techniques. As a novel design paradigm that separates training and inference, a structural re-parameterized (SR) network such as the representative RepVGG revitalizes the simple VGG-like network with a high accuracy comparable to advanced and often more complicated networks. However, the merging process in SR networks introduces outliers into weights, making their distribution distinct from conventional networks and thus heightening difficulties in quantization. To address this, we propose an operator-level improvement for training called Outlier Aware Batch Normalization (OABN). Additionally, to meet the demands of limited bitwidths while upkeeping the inference accuracy, we develop a clustering-based non-uniform quantization framework for Quantization-Aware Training (QAT) named ClusterQAT. Integrating OABN with ClusterQAT, the quantized performance of RepVGG is largely enhanced, particularly when the bitwidth falls below 8.
Abstract:$f \propto r^{-\alpha} \cdot (r+\gamma)^{-\beta}$ has been empirically shown more precise than a na\"ive power law $f\propto r^{-\alpha}$ to model the rank-frequency ($r$-$f$) relation of words in natural languages. This work shows that the only crucial parameter in the formulation is $\gamma$, which depicts the resistance to vocabulary growth on a corpus. A method of parameter estimation by searching an optimal $\gamma$ is proposed, where a ``zeroth word'' is introduced technically for the calculation. The formulation and parameters are further discussed with several case studies.
Abstract:Let $f (\cdot)$ be the absolute frequency of words and $r$ be the rank of words in decreasing order of frequency, then the following function can fit the rank-frequency relation \[ f (r;s,t) = \left(\frac{r_{\tt max}}{r}\right)^{1-s} \left(\frac{r_{\tt max}+t \cdot r_{\tt exp}}{r+t \cdot r_{\tt exp}}\right)^{1+(1+t)s} \] where $r_{\tt max}$ and $r_{\tt exp}$ are the maximum and the expectation of the rank, respectively; $s>0$ and $t>0$ are parameters estimated from data. On well-behaved data, there should be $s<1$ and $s \cdot t < 1$.
Abstract:Low resource speech recognition has been long-suffering from insufficient training data. While neighbour languages are often used as assistant training data, it would be difficult for the model to induct similar units (character, subword, etc.) across the languages. In this paper, we assume similar units in neighbour language share similar term frequency and form a Huffman tree to perform multi-lingual hierarchical Softmax decoding. During decoding, the hierarchical structure can benefit the training of low-resource languages. Experimental results show the effectiveness of our method.
Abstract:This manuscript provides general descriptions on transliteration of foreign words in the Burmese language. Phenomena caused by phonetic and orthographic issues are discussed. Based on this work, we expect to gradually establish prescriptive guidelines to normalize the transliteration on modern words in Burmese.