Abstract:Existing multilingual neural machine translation (MNMT) approaches mainly focus on improving models with the encoder-decoder architecture to translate multiple languages. However, decoder-only architecture has been explored less in MNMT due to its underperformance when trained on parallel data solely. In this work, we attribute the issue of the decoder-only architecture to its lack of language transfer capability. Specifically, the decoder-only architecture is insufficient in encoding source tokens with the target language features. We propose dividing the decoding process into two stages so that target tokens are explicitly excluded in the first stage to implicitly boost the transfer capability across languages. Additionally, we impose contrastive learning on translation instructions, resulting in improved performance in zero-shot translation. We conduct experiments on TED-19 and OPUS-100 datasets, considering both training from scratch and fine-tuning scenarios. Experimental results show that, compared to the encoder-decoder architecture, our methods not only perform competitively in supervised translations but also achieve improvements of up to 3.39 BLEU, 6.99 chrF++, 3.22 BERTScore, and 4.81 COMET in zero-shot translations.
Abstract:Minimum Bayes risk (MBR) decoding achieved state-of-the-art translation performance by using COMET, a neural metric that has a high correlation with human evaluation. However, MBR decoding requires quadratic time since it computes the expected score between a translation hypothesis and all reference translations. We propose centroid-based MBR (CBMBR) decoding to improve the speed of MBR decoding. Our method clusters the reference translations in the feature space, and then calculates the score using the centroids of each cluster. The experimental results show that our CBMBR not only improved the decoding speed of the expected score calculation 6.9 times, but also outperformed vanilla MBR decoding in translation quality by up to 0.5 COMET in the WMT'22 En$\leftrightarrow$Ja, En$\leftrightarrow$De, En$\leftrightarrow$Zh, and WMT'23 En$\leftrightarrow$Ja translation tasks.
Abstract:In scholarly documents, figures provide a straightforward way of communicating scientific findings to readers. Automating figure caption generation helps move model understandings of scientific documents beyond text and will help authors write informative captions that facilitate communicating scientific findings. Unlike previous studies, we reframe scientific figure captioning as a knowledge-augmented image captioning task that models need to utilize knowledge embedded across modalities for caption generation. To this end, we extended the large-scale SciCap dataset~\cite{hsu-etal-2021-scicap-generating} to SciCap+ which includes mention-paragraphs (paragraphs mentioning figures) and OCR tokens. Then, we conduct experiments with the M4C-Captioner (a multimodal transformer-based model with a pointer network) as a baseline for our study. Our results indicate that mention-paragraphs serves as additional context knowledge, which significantly boosts the automatic standard image caption evaluation scores compared to the figure-only baselines. Human evaluations further reveal the challenges of generating figure captions that are informative to readers. The code and SciCap+ dataset will be publicly available at https://github.com/ZhishenYang/scientific_figure_captioning_dataset