Abstract:Mining parallel document pairs poses a significant challenge because existing sentence embedding models often have limited context windows, preventing them from effectively capturing document-level information. Another overlooked issue is the lack of concrete evaluation benchmarks comprising high-quality parallel document pairs for assessing document-level mining approaches, particularly for Indic languages. In this study, we introduce Pralekha, a large-scale benchmark for document-level alignment evaluation. Pralekha includes over 2 million documents, with a 1:2 ratio of unaligned to aligned pairs, covering 11 Indic languages and English. Using Pralekha, we evaluate various document-level mining approaches across three dimensions: the embedding models, the granularity levels, and the alignment algorithm. To address the challenge of aligning documents using sentence and chunk-level alignments, we propose a novel scoring method, Document Alignment Coefficient (DAC). DAC demonstrates substantial improvements over baseline pooling approaches, particularly in noisy scenarios, achieving average gains of 20-30% in precision and 15-20% in F1 score. These results highlight DAC's effectiveness in parallel document mining for Indic languages.
Abstract:Visual Question Answering (VQA) is an important task in multimodal AI, and it is often used to test the ability of vision-language models to understand and reason on knowledge present in both visual and textual data. However, most of the current VQA models use datasets that are primarily focused on English and a few major world languages, with images that are typically Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, although these datasets often extend their linguistic range via translation or some other approaches, they usually keep images the same, resulting in narrow cultural representation. To address these limitations, we construct CVQA, a new Culturally-diverse multilingual Visual Question Answering benchmark, designed to cover a rich set of languages and cultures, where we engage native speakers and cultural experts in the data collection process. As a result, CVQA includes culturally-driven images and questions from across 28 countries on four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We then benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models. This benchmark can serve as a probing evaluation suite for assessing the cultural capability and bias of multimodal models and hopefully encourage more research efforts toward increasing cultural awareness and linguistic diversity in this field.
Abstract:Personality recognition is useful for enhancing robots' ability to tailor user-adaptive responses, thus fostering rich human-robot interactions. One of the challenges in this task is a limited number of speakers in existing dialogue corpora, which hampers the development of robust, speaker-independent personality recognition models. Additionally, accurately modeling both the interdependencies among interlocutors and the intra-dependencies within the speaker in dialogues remains a significant issue. To address the first challenge, we introduce personality trait interpolation for speaker data augmentation. For the second, we propose heterogeneous conversational graph networks to independently capture both contextual influences and inherent personality traits. Evaluations on the RealPersonaChat corpus demonstrate our method's significant improvements over existing baselines.
Abstract:Lecture transcript translation helps learners understand online courses, however, building a high-quality lecture machine translation system lacks publicly available parallel corpora. To address this, we examine a framework for parallel corpus mining, which provides a quick and effective way to mine a parallel corpus from publicly available lectures on Coursera. To create the parallel corpora, we propose a dynamic programming based sentence alignment algorithm which leverages the cosine similarity of machine-translated sentences. The sentence alignment F1 score reaches 96%, which is higher than using the BERTScore, LASER, or sentBERT methods. For both English--Japanese and English--Chinese lecture translations, we extracted parallel corpora of approximately 50,000 lines and created development and test sets through manual filtering for benchmarking translation performance. Through machine translation experiments, we show that the mined corpora enhance the quality of lecture transcript translation when used in conjunction with out-of-domain parallel corpora via multistage fine-tuning. Furthermore, this study also suggests guidelines for gathering and cleaning corpora, mining parallel sentences, cleaning noise in the mined data, and creating high-quality evaluation splits. For the sake of reproducibility, we have released the corpora as well as the code to create them. The dataset is available at https://github.com/shyyhs/CourseraParallelCorpusMining.
Abstract:Sub-word segmentation is an essential pre-processing step for Neural Machine Translation (NMT). Existing work has shown that neural sub-word segmenters are better than Byte-Pair Encoding (BPE), however, they are inefficient as they require parallel corpora, days to train and hours to decode. This paper introduces SelfSeg, a self-supervised neural sub-word segmentation method that is much faster to train/decode and requires only monolingual dictionaries instead of parallel corpora. SelfSeg takes as input a word in the form of a partially masked character sequence, optimizes the word generation probability and generates the segmentation with the maximum posterior probability, which is calculated using a dynamic programming algorithm. The training time of SelfSeg depends on word frequencies, and we explore several word frequency normalization strategies to accelerate the training phase. Additionally, we propose a regularization mechanism that allows the segmenter to generate various segmentations for one word. To show the effectiveness of our approach, we conduct MT experiments in low-, middle- and high-resource scenarios, where we compare the performance of using different segmentation methods. The experimental results demonstrate that on the low-resource ALT dataset, our method achieves more than 1.2 BLEU score improvement compared with BPE and SentencePiece, and a 1.1 score improvement over Dynamic Programming Encoding (DPE) and Vocabulary Learning via Optimal Transport (VOLT) on average. The regularization method achieves approximately a 4.3 BLEU score improvement over BPE and a 1.2 BLEU score improvement over BPE-dropout, the regularized version of BPE. We also observed significant improvements on IWSLT15 Vi->En, WMT16 Ro->En and WMT15 Fi->En datasets, and competitive results on the WMT14 De->En and WMT14 Fr->En datasets.
Abstract:The language-independency of encoded representations within multilingual neural machine translation (MNMT) models is crucial for their generalization ability on zero-shot translation. Neural interlingua representations have been shown as an effective method for achieving this. However, fixed-length neural interlingua representations introduced in previous work can limit its flexibility and representation ability. In this study, we introduce a novel method to enhance neural interlingua representations by making their length variable, thereby overcoming the constraint of fixed-length neural interlingua representations. Our empirical results on zero-shot translation on OPUS, IWSLT, and Europarl datasets demonstrate stable model convergence and superior zero-shot translation results compared to fixed-length neural interlingua representations. However, our analysis reveals the suboptimal efficacy of our approach in translating from certain source languages, wherein we pinpoint the defective model component in our proposed method.
Abstract:This paper studies the impact of layer normalization (LayerNorm) on zero-shot translation (ZST). Recent efforts for ZST often utilize the Transformer architecture as the backbone, with LayerNorm at the input of layers (PreNorm) set as the default. However, Xu et al. (2019) has revealed that PreNorm carries the risk of overfitting the training data. Based on this, we hypothesize that PreNorm may overfit supervised directions and thus have low generalizability for ZST. Through experiments on OPUS, IWSLT, and Europarl datasets for 54 ZST directions, we demonstrate that the original Transformer setting of LayerNorm after residual connections (PostNorm) consistently outperforms PreNorm by up to 12.3 BLEU points. We then study the performance disparities by analyzing the differences in off-target rates and structural variations between PreNorm and PostNorm. This study highlights the need for careful consideration of the LayerNorm setting for ZST.
Abstract:In spite of the potential for ground-breaking achievements offered by large language models (LLMs) (e.g., GPT-3), they still lag significantly behind fully-supervised baselines (e.g., fine-tuned BERT) in relation extraction (RE). This is due to the two major shortcomings of LLMs in RE: (1) low relevance regarding entity and relation in retrieved demonstrations for in-context learning; and (2) the strong inclination to wrongly classify NULL examples into other pre-defined labels. In this paper, we propose GPT-RE to bridge the gap between LLMs and fully-supervised baselines. GPT-RE successfully addresses the aforementioned issues by (1) incorporating task-specific entity representations in demonstration retrieval; and (2) enriching the demonstrations with gold label-induced reasoning logic. We evaluate GPT-RE on four widely-used RE datasets, and observe that GPT-RE achieves improvements over not only existing GPT-3 baselines, but also fully-supervised baselines. Specifically, GPT-RE achieves SOTA performances on the Semeval and SciERC datasets, and competitive performances on the TACRED and ACE05 datasets.
Abstract:Contrastive pre-training on distant supervision has shown remarkable effectiveness for improving supervised relation extraction tasks. However, the existing methods ignore the intrinsic noise of distant supervision during the pre-training stage. In this paper, we propose a weighted contrastive learning method by leveraging the supervised data to estimate the reliability of pre-training instances and explicitly reduce the effect of noise. Experimental results on three supervised datasets demonstrate the advantages of our proposed weighted contrastive learning approach, compared to two state-of-the-art non-weighted baselines.
Abstract:Word alignment has proven to benefit many-to-many neural machine translation (NMT). However, high-quality ground-truth bilingual dictionaries were used for pre-editing in previous methods, which are unavailable for most language pairs. Meanwhile, the contrastive objective can implicitly utilize automatically learned word alignment, which has not been explored in many-to-many NMT. This work proposes a word-level contrastive objective to leverage word alignments for many-to-many NMT. Empirical results show that this leads to 0.8 BLEU gains for several language pairs. Analyses reveal that in many-to-many NMT, the encoder's sentence retrieval performance highly correlates with the translation quality, which explains when the proposed method impacts translation. This motivates future exploration for many-to-many NMT to improve the encoder's sentence retrieval performance.