Abstract:Instruction tuning is crucial for enabling Large Language Models (LLMs) to solve real-world tasks. Prior work has shown the effectiveness of instruction-tuning data synthesized solely from LLMs, raising a fundamental question: Do we still need human-originated signals for instruction tuning? This work answers the question affirmatively: we build state-of-the-art instruction-tuning datasets sourced from human-written instructions, by simply pairing them with LLM-generated responses. LLMs fine-tuned on our datasets consistently outperform those fine-tuned on existing ones. Our data construction approach can be easily adapted to other languages; we build datasets for Japanese and confirm that LLMs tuned with our data reach state-of-the-art performance. Analyses suggest that instruction-tuning in a new language allows LLMs to follow instructions, while the tuned models exhibit a notable lack of culture-specific knowledge in that language. The datasets and fine-tuned models will be publicly available. Our datasets, synthesized with open-weight LLMs, are openly distributed under permissive licenses, allowing for diverse use cases.
Abstract:Self-Correction based on feedback improves the output quality of Large Language Models (LLMs). Moreover, as Self-Correction functions like the slow and conscious System-2 thinking from cognitive psychology's perspective, it can potentially reduce LLMs' social biases. LLMs are sensitive to contextual ambiguities and inconsistencies; therefore, explicitly communicating their intentions during interactions when applying Self-Correction for debiasing is crucial. In this study, we demonstrate that clarifying intentions is essential for effectively reducing biases in LLMs through Self-Correction. We divide the components needed for Self-Correction into three parts: instruction, response, and feedback, and clarify intentions at each component. We incorporate an explicit debiasing prompt to convey the intention of bias mitigation from the instruction for response generation. In the response, we use Chain-of-Thought (CoT) to clarify the reasoning process. In the feedback, we define evaluation aspects necessary for debiasing and propose clear feedback through multi-aspect critiques and scoring. Through experiments, we demonstrate that self-correcting CoT responses obtained from a debiasing prompt based on multi-aspect feedback can reduce biased responses more robustly and consistently than the baselines. We also find the variation in debiasing efficacy when using models with different bias levels or separating models for response and feedback generation.
Abstract:The rise of large language models (LLMs) has led to more diverse and higher-quality machine-generated text. However, their high expressive power makes it difficult to control outputs based on specific business instructions. In response, benchmarks focusing on the controllability of LLMs have been developed, but several issues remain: (1) They primarily cover major languages like English and Chinese, neglecting low-resource languages like Japanese; (2) Current benchmarks employ task-specific evaluation metrics, lacking a unified framework for selecting models based on controllability across different use cases. To address these challenges, this research introduces LCTG Bench, the first Japanese benchmark for evaluating the controllability of LLMs. LCTG Bench provides a unified framework for assessing control performance, enabling users to select the most suitable model for their use cases based on controllability. By evaluating nine diverse Japanese-specific and multilingual LLMs like GPT-4, we highlight the current state and challenges of controllability in Japanese LLMs and reveal the significant gap between multilingual models and Japanese-specific models.
Abstract:Vision-language models (VLMs) have shown impressive abilities in text and image understanding. However, existing metrics for evaluating the text generated by VLMs focus exclusively on overall quality, leading to two limitations: 1) it is challenging to identify which aspects of the text need improvement from the overall score; 2) metrics may overlook specific evaluation criteria when predicting an overall score. To address these limitations, we propose HarmonicEval, a reference-free evaluation metric that aggregates criterion-wise scores to produce the overall score in a bottom-up manner. Furthermore, we construct the Multi-task Multi-criteria Human Evaluation (MMHE) dataset, which comprises 18,000 expert human judgments across four vision-language tasks. Our experiments demonstrate that HarmonicEval achieves higher correlations with human judgments than conventional metrics while providing numerical scores for each criterion.
Abstract:Why do we build local large language models (LLMs)? What should a local LLM learn from the target language? Which abilities can be transferred from other languages? Do language-specific scaling laws exist? To explore these research questions, we evaluated 35 Japanese, English, and multilingual LLMs on 19 evaluation benchmarks for Japanese and English, taking Japanese as a local language. Adopting an observational approach, we analyzed correlations of benchmark scores, and conducted principal component analysis (PCA) on the scores to derive \textit{ability factors} of local LLMs. We found that training on English text can improve the scores of academic subjects in Japanese (JMMLU). In addition, it is unnecessary to specifically train on Japanese text to enhance abilities for solving Japanese code generation, arithmetic reasoning, commonsense, and reading comprehension tasks. In contrast, training on Japanese text could improve question-answering tasks about Japanese knowledge and English-Japanese translation, which indicates that abilities for solving these two tasks can be regarded as \textit{Japanese abilities} for LLMs. Furthermore, we confirmed that the Japanese abilities scale with the computational budget for Japanese text.
Abstract:To develop high-performing Visual Language Models (VLMs), it is essential to prepare multimodal resources, such as image-text pairs, interleaved data, and instruction data. While multimodal resources for English are abundant, there is a significant lack of corresponding resources for non-English languages, such as Japanese. To address this problem, we take Japanese as a non-English language and propose a method for rapidly creating Japanese multimodal datasets from scratch. We collect Japanese image-text pairs and interleaved data from web archives and generate Japanese instruction data directly from images using an existing VLM. Our experimental results show that a VLM trained on these native datasets outperforms those relying on machine-translated content.
Abstract:Tokenization is the first step in modern neural language model pipelines where an input text is converted to a sequence of subword tokens. We introduce from first principles a finite-state transduction framework which can efficiently encode all possible tokenizations of a regular language. We then constructively show that Byte-Pair Encoding (BPE) and MaxMatch (WordPiece), two popular tokenization schemes, fit within this framework. For BPE, this is particularly surprising given its resemblance to context-free grammar and the fact that it does not tokenize strings from left to right. An application of this is to guided generation, where the outputs of a language model are constrained to match some pattern. Here, patterns are encoded at the character level, which creates a mismatch between the constraints and the model's subword vocabulary. While past work has focused only on constraining outputs without regard to the underlying tokenization algorithm, our framework allows for simultaneously constraining the model outputs to match a specified pattern while also adhering to the underlying tokenizer's canonical tokenization.
Abstract:Subword regularization, used widely in NLP, improves model performance by reducing the dependency on exact tokenizations, augmenting the training corpus, and exposing the model to more unique contexts during training. BPE and MaxMatch, two popular subword tokenization schemes, have stochastic dropout regularization variants. However, there has not been an analysis of the distributions formed by them. We show that these stochastic variants are heavily biased towards a small set of tokenizations per word. If the benefits of subword regularization are as mentioned, we hypothesize that biasedness artificially limits the effectiveness of these schemes. Thus, we propose an algorithm to uniformly sample tokenizations that we use as a drop-in replacement for the stochastic aspects of existing tokenizers, and find that it improves machine translation quality.
Abstract:Mixture of Experts (MoE) offers remarkable performance and computational efficiency by selectively activating subsets of model parameters. Traditionally, MoE models use homogeneous experts, each with identical capacity. However, varying complexity in input data necessitates experts with diverse capabilities, while homogeneous MoE hinders effective expert specialization and efficient parameter utilization. In this study, we propose a novel Heterogeneous Mixture of Experts (HMoE), where experts differ in size and thus possess diverse capacities. This heterogeneity allows for more specialized experts to handle varying token complexities more effectively. To address the imbalance in expert activation, we propose a novel training objective that encourages the frequent activation of smaller experts, enhancing computational efficiency and parameter utilization. Extensive experiments demonstrate that HMoE achieves lower loss with fewer activated parameters and outperforms conventional homogeneous MoE models on various pre-training evaluation benchmarks. Codes will be released upon acceptance.
Abstract:This paper introduces LLM-jp, a cross-organizational project for the research and development of Japanese large language models (LLMs). LLM-jp aims to develop open-source and strong Japanese LLMs, and as of this writing, more than 1,500 participants from academia and industry are working together for this purpose. This paper presents the background of the establishment of LLM-jp, summaries of its activities, and technical reports on the LLMs developed by LLM-jp. For the latest activities, visit https://llm-jp.nii.ac.jp/en/.