Linda
Abstract:3D characters are essential to modern creative industries, but making them animatable often demands extensive manual work in tasks like rigging and skinning. Existing automatic rigging tools face several limitations, including the necessity for manual annotations, rigid skeleton topologies, and limited generalization across diverse shapes and poses. An alternative approach is to generate animatable avatars pre-bound to a rigged template mesh. However, this method often lacks flexibility and is typically limited to realistic human shapes. To address these issues, we present Make-It-Animatable, a novel data-driven method to make any 3D humanoid model ready for character animation in less than one second, regardless of its shapes and poses. Our unified framework generates high-quality blend weights, bones, and pose transformations. By incorporating a particle-based shape autoencoder, our approach supports various 3D representations, including meshes and 3D Gaussian splats. Additionally, we employ a coarse-to-fine representation and a structure-aware modeling strategy to ensure both accuracy and robustness, even for characters with non-standard skeleton structures. We conducted extensive experiments to validate our framework's effectiveness. Compared to existing methods, our approach demonstrates significant improvements in both quality and speed.
Abstract:Deep reinforcement learning (DRL) has been extensively applied to Multi-Unmanned Aerial Vehicle (UAV) network (MUN) to effectively enable real-time adaptation to complex, time-varying environments. Nevertheless, most of the existing works assume a stationary user distribution (UD) or a dynamic one with predicted patterns. Such considerations may make the UD-specific strategies insufficient when a MUN is deployed in unknown environments. To this end, this paper investigates distributed user connectivity maximization problem in a MUN with generalization to arbitrary UDs. Specifically, the problem is first formulated into a time-coupled combinatorial nonlinear non-convex optimization with arbitrary underlying UDs. To make the optimization tractable, a multi-agent CNN-enhanced deep Q learning (MA-CDQL) algorithm is proposed. The algorithm integrates a ResNet-based CNN to the policy network to analyze the input UD in real time and obtain optimal decisions based on the extracted high-level UD features. To improve the learning efficiency and avoid local optimums, a heatmap algorithm is developed to transform the raw UD to a continuous density map. The map will be part of the true input to the policy network. Simulations are conducted to demonstrate the efficacy of UD heatmaps and the proposed algorithm in maximizing user connectivity as compared to K-means methods.
Abstract:Recent research has focused on literary machine translation (MT) as a new challenge in MT. However, the evaluation of literary MT remains an open problem. We contribute to this ongoing discussion by introducing LITEVAL-CORPUS, a paragraph-level parallel corpus comprising multiple verified human translations and outputs from 9 MT systems, which totals over 2k paragraphs and includes 13k annotated sentences across four language pairs, costing 4.5k Euro. This corpus enables us to (i) examine the consistency and adequacy of multiple annotation schemes, (ii) compare evaluations by students and professionals, and (iii) assess the effectiveness of LLM-based metrics. We find that Multidimensional Quality Metrics (MQM), as the de facto standard in non-literary human MT evaluation, is inadequate for literary translation: While Best-Worst Scaling (BWS) with students and Scalar Quality Metric (SQM) with professional translators prefer human translations at rates of ~82% and ~94%, respectively, MQM with student annotators prefers human professional translations over the translations of the best-performing LLMs in only ~42% of cases. While automatic metrics generally show a moderate correlation with human MQM and SQM, they struggle to accurately identify human translations, with rates of at most ~20%. Our overall evaluation indicates that human professional translations consistently outperform LLM translations, where even the most recent LLMs tend to produce more literal and less diverse translations compared to human translations. However, newer LLMs such as GPT-4o perform substantially better than older ones.
Abstract:Unmanned Aerial Vehicle (UAV) based communication networks (UCNs) are a key component in future mobile networking. To handle the dynamic environments in UCNs, reinforcement learning (RL) has been a promising solution attributed to its strong capability of adaptive decision-making free of the environment models. However, most existing RL-based research focus on control strategy design assuming a fixed set of UAVs. Few works have investigated how UCNs should be adaptively regulated when the serving UAVs change dynamically. This article discusses RL-based strategy design for adaptive UCN regulation given a dynamic UAV set, addressing both reactive strategies in general UCNs and proactive strategies in solar-powered UCNs. An overview of the UCN and the RL framework is first provided. Potential research directions with key challenges and possible solutions are then elaborated. Some of our recent works are presented as case studies to inspire innovative ways to handle dynamic UAV crew with different RL algorithms.
Abstract:Despite substantial progress of large language models (LLMs) for automatic poetry generation, the generated poetry lacks diversity while the training process differs greatly from human learning. Under the rationale that the learning process of the poetry generation systems should be more human-like and their output more diverse and novel, we introduce a framework based on social learning where we emphasize non-cooperative interactions besides cooperative interactions to encourage diversity. Our experiments are the first attempt at LLM-based multi-agent systems in non-cooperative environments for poetry generation employing both TRAINING-BASED agents (GPT-2) and PROMPTING-BASED agents (GPT-3 and GPT-4). Our evaluation based on 96k generated poems shows that our framework benefits the poetry generation process for TRAINING-BASED agents resulting in 1) a 3.0-3.7 percentage point (pp) increase in diversity and a 5.6-11.3 pp increase in novelty according to distinct and novel n-grams. The generated poetry from TRAINING-BASED agents also exhibits group divergence in terms of lexicons, styles and semantics. PROMPTING-BASED agents in our framework also benefit from non-cooperative environments and a more diverse ensemble of models with non-homogeneous agents has the potential to further enhance diversity, with an increase of 7.0-17.5 pp according to our experiments. However, PROMPTING-BASED agents show a decrease in lexical diversity over time and do not exhibit the group-based divergence intended in the social network. Our paper argues for a paradigm shift in creative tasks such as automatic poetry generation to include social learning processes (via LLM-based agent modeling) similar to human interaction.
Abstract:We present Bidirectional Gaussian Primitives, an image-based novel view synthesis technique designed to represent and render 3D objects with surface and volumetric materials under dynamic illumination. Our approach integrates light intrinsic decomposition into the Gaussian splatting framework, enabling real-time relighting of 3D objects. To unify surface and volumetric material within a cohesive appearance model, we adopt a light- and view-dependent scattering representation via bidirectional spherical harmonics. Our model does not use a specific surface normal-related reflectance function, making it more compatible with volumetric representations like Gaussian splatting, where the normals are undefined. We demonstrate our method by reconstructing and rendering objects with complex materials. Using One-Light-At-a-Time (OLAT) data as input, we can reproduce photorealistic appearances under novel lighting conditions in real time.
Abstract:Generative Artificial Intelligence (GAI) is taking the world by storm with its unparalleled content creation ability. Large Language Models (LLMs) are at the forefront of this movement. However, the significant resource demands of LLMs often require cloud hosting, which raises issues regarding privacy, latency, and usage limitations. Although edge intelligence has long been utilized to solve these challenges by enabling real-time AI computation on ubiquitous edge resources close to data sources, most research has focused on traditional AI models and has left a gap in addressing the unique characteristics of LLM inference, such as considerable model size, auto-regressive processes, and self-attention mechanisms. In this paper, we present an edge intelligence optimization problem tailored for LLM inference. Specifically, with the deployment of the batching technique and model quantization on resource-limited edge devices, we formulate an inference model for transformer decoder-based LLMs. Furthermore, our approach aims to maximize the inference throughput via batch scheduling and joint allocation of communication and computation resources, while also considering edge resource constraints and varying user requirements of latency and accuracy. To address this NP-hard problem, we develop an optimal Depth-First Tree-Searching algorithm with online tree-Pruning (DFTSP) that operates within a feasible time complexity. Simulation results indicate that DFTSP surpasses other batching benchmarks in throughput across diverse user settings and quantization techniques, and it reduces time complexity by over 45% compared to the brute-force searching method.
Abstract:Artificial Intelligence (AI) has witnessed rapid growth, especially in the subfields Natural Language Processing (NLP), Machine Learning (ML) and Computer Vision (CV). Keeping pace with this rapid progress poses a considerable challenge for researchers and professionals in the field. In this arXiv report, the second of its kind, which covers the period from January to September 2023, we aim to provide insights and analysis that help navigate these dynamic areas of AI. We accomplish this by 1) identifying the top-40 most cited papers from arXiv in the given period, comparing the current top-40 papers to the previous report, which covered the period January to June; 2) analyzing dataset characteristics and keyword popularity; 3) examining the global sectoral distribution of institutions to reveal differences in engagement across geographical areas. Our findings highlight the continued dominance of NLP: while only 16% of all submitted papers have NLP as primary category (more than 25% have CV and ML as primary category), 50% of the most cited papers have NLP as primary category, 90% of which target LLMs. Additionally, we show that i) the US dominates among both top-40 and top-9k papers, followed by China; ii) Europe clearly lags behind and is hardly represented in the top-40 most cited papers; iii) US industry is largely overrepresented in the top-40 most influential papers.
Abstract:Neural Radiance Fields (NeRF) have significantly advanced the generation of highly realistic and expressive 3D scenes. However, the task of editing NeRF, particularly in terms of geometry modification, poses a significant challenge. This issue has obstructed NeRF's wider adoption across various applications. To tackle the problem of efficiently editing neural implicit fields, we introduce Neural Impostor, a hybrid representation incorporating an explicit tetrahedral mesh alongside a multigrid implicit field designated for each tetrahedron within the explicit mesh. Our framework bridges the explicit shape manipulation and the geometric editing of implicit fields by utilizing multigrid barycentric coordinate encoding, thus offering a pragmatic solution to deform, composite, and generate neural implicit fields while maintaining a complex volumetric appearance. Furthermore, we propose a comprehensive pipeline for editing neural implicit fields based on a set of explicit geometric editing operations. We show the robustness and adaptability of our system through diverse examples and experiments, including the editing of both synthetic objects and real captured data. Finally, we demonstrate the authoring process of a hybrid synthetic-captured object utilizing a variety of editing operations, underlining the transformative potential of Neural Impostor in the field of 3D content creation and manipulation.
Abstract:Facade parsing stands as a pivotal computer vision task with far-reaching applications in areas like architecture, urban planning, and energy efficiency. Despite the recent success of deep learning-based methods in yielding impressive results on certain open-source datasets, their viability for real-world applications remains uncertain. Real-world scenarios are considerably more intricate, demanding greater computational efficiency. Existing datasets often fall short in representing these settings, and previous methods frequently rely on extra models to enhance accuracy, which requires much computation cost. In this paper, we introduce Comprehensive Facade Parsing (CFP), a dataset meticulously designed to encompass the intricacies of real-world facade parsing tasks. Comprising a total of 602 high-resolution street-view images, this dataset captures a diverse array of challenging scenarios, including sloping angles and densely clustered buildings, with painstakingly curated annotations for each image. We introduce a new pipeline known as Revision-based Transformer Facade Parsing (RTFP). This marks the pioneering utilization of Vision Transformers (ViT) in facade parsing, and our experimental results definitively substantiate its merit. We also design Line Acquisition, Filtering, and Revision (LAFR), an efficient yet accurate revision algorithm that can improve the segment result solely from simple line detection using prior knowledge of the facade. In ECP 2011, RueMonge 2014, and our CFP, we evaluate the superiority of our method.