Abstract:Greedy algorithms, particularly the orthogonal greedy algorithm (OGA), have proven effective in training shallow neural networks for fitting functions and solving partial differential equations (PDEs). In this paper, we extend the application of OGA to the tasks of linear operator learning, which is equivalent to learning the kernel function through integral transforms. Firstly, a novel greedy algorithm is developed for kernel estimation rate in a new semi-inner product, which can be utilized to approximate the Green's function of linear PDEs from data. Secondly, we introduce the OGA for point-wise kernel estimation to further improve the approximation rate, achieving orders of accuracy improvement across various tasks and baseline models. In addition, we provide a theoretical analysis on the kernel estimation problem and the optimal approximation rates for both algorithms, establishing their efficacy and potential for future applications in PDEs and operator learning tasks.
Abstract:GreenLearning networks (GL) directly learn Green's function in physical space, making them an interpretable model for capturing unknown solution operators of partial differential equations (PDEs). For many PDEs, the corresponding Green's function exhibits asymptotic smoothness. In this paper, we propose a framework named Green Multigrid networks (GreenMGNet), an operator learning algorithm designed for a class of asymptotically smooth Green's functions. Compared with the pioneering GL, the new framework presents itself with better accuracy and efficiency, thereby achieving a significant improvement. GreenMGNet is composed of two technical novelties. First, Green's function is modeled as a piecewise function to take into account its singular behavior in some parts of the hyperplane. Such piecewise function is then approximated by a neural network with augmented output(AugNN) so that it can capture singularity accurately. Second, the asymptotic smoothness property of Green's function is used to leverage the Multi-Level Multi-Integration (MLMI) algorithm for both the training and inference stages. Several test cases of operator learning are presented to demonstrate the accuracy and effectiveness of the proposed method. On average, GreenMGNet achieves $3.8\%$ to $39.15\%$ accuracy improvement. To match the accuracy level of GL, GreenMGNet requires only about $10\%$ of the full grid data, resulting in a $55.9\%$ and $92.5\%$ reduction in training time and GPU memory cost for one-dimensional test problems, and a $37.7\%$ and $62.5\%$ reduction for two-dimensional test problems.