Abstract:Data augmentation is an essential technique in natural language processing (NLP) for enriching training datasets by generating diverse samples. This process is crucial for improving the robustness and generalization capabilities of NLP models. However, a significant challenge remains: \textit{Insufficient Attention to Sample Distribution Diversity}. Most existing methods focus on increasing the sample numbers while neglecting the sample distribution diversity, which can lead to model overfitting. In response, we explore data augmentation's impact on dataset diversity and propose a \textbf{\underline{D}}iversity-\textbf{\underline{o}}riented data \textbf{\underline{Aug}}mentation framework (\textbf{DoAug}). % \(\mathscr{DoAug}\) Specifically, we utilize a diversity-oriented fine-tuning approach to train an LLM as a diverse paraphraser, which is capable of augmenting textual datasets by generating diversified paraphrases. Then, we apply the LLM paraphraser to a selected coreset of highly informative samples and integrate the paraphrases with the original data to create a more diverse augmented dataset. Finally, we conduct extensive experiments on 12 real-world textual datasets. The results show that our fine-tuned LLM augmenter improves diversity while preserving label consistency, thereby enhancing the robustness and performance of downstream tasks. Specifically, it achieves an average performance gain of \(10.52\%\), surpassing the runner-up baseline with more than three percentage points.
Abstract:Humans excel in analogical learning and knowledge transfer and, more importantly, possess a unique understanding of identifying appropriate sources of knowledge. From a model's perspective, this presents an interesting challenge. If models could autonomously retrieve knowledge useful for transfer or decision-making to solve problems, they would transition from passively acquiring to actively accessing and learning from knowledge. However, filling models with knowledge is relatively straightforward -- it simply requires more training and accessible knowledge bases. The more complex task is teaching models about which knowledge can be analogized and transferred. Therefore, we design a knowledge augmentation method LEKA for knowledge transfer that actively searches for suitable knowledge sources that can enrich the target domain's knowledge. This LEKA method extracts key information from textual information from the target domain, retrieves pertinent data from external data libraries, and harmonizes retrieved data with the target domain data in feature space and marginal probability measures. We validate the effectiveness of our approach through extensive experiments across various domains and demonstrate significant improvements over traditional methods in reducing computational costs, automating data alignment, and optimizing transfer learning outcomes.
Abstract:Iterative feature space optimization involves systematically evaluating and adjusting the feature space to improve downstream task performance. However, existing works suffer from three key limitations:1) overlooking differences among data samples leads to evaluation bias; 2) tailoring feature spaces to specific machine learning models results in overfitting and poor generalization; 3) requiring the evaluator to be retrained from scratch during each optimization iteration significantly reduces the overall efficiency of the optimization process. To bridge these gaps, we propose a gEneralized Adaptive feature Space Evaluator (EASE) to efficiently produce optimal and generalized feature spaces. This framework consists of two key components: Feature-Sample Subspace Generator and Contextual Attention Evaluator. The first component aims to decouple the information distribution within the feature space to mitigate evaluation bias. To achieve this, we first identify features most relevant to prediction tasks and samples most challenging for evaluation based on feedback from the subsequent evaluator. This decoupling strategy makes the evaluator consistently target the most challenging aspects of the feature space. The second component intends to incrementally capture evolving patterns of the feature space for efficient evaluation. We propose a weighted-sharing multi-head attention mechanism to encode key characteristics of the feature space into an embedding vector for evaluation. Moreover, the evaluator is updated incrementally, retaining prior evaluation knowledge while incorporating new insights, as consecutive feature spaces during the optimization process share partial information. Extensive experiments on fourteen real-world datasets demonstrate the effectiveness of the proposed framework. Our code and data are publicly available.
Abstract:Tabular data is one of the most widely used formats across industries, driving critical applications in areas such as finance, healthcare, and marketing. In the era of data-centric AI, improving data quality and representation has become essential for enhancing model performance, particularly in applications centered around tabular data. This survey examines the key aspects of tabular data-centric AI, emphasizing feature selection and feature generation as essential techniques for data space refinement. We provide a systematic review of feature selection methods, which identify and retain the most relevant data attributes, and feature generation approaches, which create new features to simplify the capture of complex data patterns. This survey offers a comprehensive overview of current methodologies through an analysis of recent advancements, practical applications, and the strengths and limitations of these techniques. Finally, we outline open challenges and suggest future perspectives to inspire continued innovation in this field.
Abstract:In recent years, Large Language Models (LLMs) have become increasingly more powerful in their ability to complete complex tasks. One such task in which LLMs are often employed is scoring, i.e., assigning a numerical value from a certain scale to a subject. In this paper, we strive to understand how LLMs score, specifically in the context of empathy scoring. We develop a novel and comprehensive framework for investigating how effective LLMs are at measuring and scoring empathy of responses in dialogues, and what methods can be employed to deepen our understanding of LLM scoring. Our strategy is to approximate the performance of state-of-the-art and fine-tuned LLMs with explicit and explainable features. We train classifiers using various features of dialogues including embeddings, the Motivational Interviewing Treatment Integrity (MITI) Code, a set of explicit subfactors of empathy as proposed by LLMs, and a combination of the MITI Code and the explicit subfactors. Our results show that when only using embeddings, it is possible to achieve performance close to that of generic LLMs, and when utilizing the MITI Code and explicit subfactors scored by an LLM, the trained classifiers can closely match the performance of fine-tuned LLMs. We employ feature selection methods to derive the most crucial features in the process of empathy scoring. Our work provides a new perspective toward understanding LLM empathy scoring and helps the LLM community explore the potential of LLM scoring in social science studies.
Abstract:Feature space is an environment where data points are vectorized to represent the original dataset. Reconstructing a good feature space is essential to augment the AI power of data, improve model generalization, and increase the availability of downstream ML models. Existing literature, such as feature transformation and feature selection, is labor-intensive (e.g., heavy reliance on empirical experience) and mostly designed for tabular data. Moreover, these methods regard data samples as independent, which ignores the unique topological structure when applied to graph data, thus resulting in a suboptimal reconstruction feature space. Can we consider the topological information to automatically reconstruct feature space for graph data without heavy experiential knowledge? To fill this gap, we leverage topology-aware reinforcement learning to automate and optimize feature space reconstruction for graph data. Our approach combines the extraction of core subgraphs to capture essential structural information with a graph neural network (GNN) to encode topological features and reduce computing complexity. Then we introduce three reinforcement agents within a hierarchical structure to systematically generate meaningful features through an iterative process, effectively reconstructing the feature space. This framework provides a principled solution for attributed graph feature space reconstruction. The extensive experiments demonstrate the effectiveness and efficiency of including topological awareness.
Abstract:In the financial field, precise risk assessment tools are essential for decision-making. Recent studies have challenged the notion that traditional network loss functions like Mean Square Error (MSE) are adequate, especially under extreme risk conditions that can lead to significant losses during market upheavals. Transformers and Transformer-based models are now widely used in financial forecasting according to their outstanding performance in time-series-related predictions. However, these models typically lack sensitivity to extreme risks and often underestimate great financial losses. To address this problem, we introduce a novel loss function, the Loss-at-Risk, which incorporates Value at Risk (VaR) and Conditional Value at Risk (CVaR) into Transformer models. This integration allows Transformer models to recognize potential extreme losses and further improves their capability to handle high-stakes financial decisions. Moreover, we conduct a series of experiments with highly volatile financial datasets to demonstrate that our Loss-at-Risk function improves the Transformers' risk prediction and management capabilities without compromising their decision-making accuracy or efficiency. The results demonstrate that integrating risk-aware metrics during training enhances the Transformers' risk assessment capabilities while preserving their core strengths in decision-making and reasoning across diverse scenarios.
Abstract:Deep Reinforcement Learning has shown excellent performance in generating efficient solutions for complex tasks. However, its efficacy is often limited by static training modes and heavy reliance on vast data from stable environments. To address these shortcomings, this study explores integrating dynamic weight adjustments into Deep Q-Networks (DQN) to enhance their adaptability. We implement these adjustments by modifying the sampling probabilities in the experience replay to make the model focus more on pivotal transitions as indicated by real-time environmental feedback and performance metrics. We design a novel Interactive Dynamic Evaluation Method (IDEM) for DQN that successfully navigates dynamic environments by prioritizing significant transitions based on environmental feedback and learning progress. Additionally, when faced with rapid changes in environmental conditions, IDEM-DQN shows improved performance compared to baseline methods. Our results indicate that under circumstances requiring rapid adaptation, IDEM-DQN can more effectively generalize and stabilize learning. Extensive experiments across various settings confirm that IDEM-DQN outperforms standard DQN models, particularly in environments characterized by frequent and unpredictable changes.
Abstract:Recent advances in large language models (LLMs) have demonstrated their potential in handling complex reasoning tasks, which are usually achieved by constructing a thought chain to guide the model to solve the problem with multi-step thinking. However, existing methods often remain confined to previously explored solution spaces and thus overlook the critical blind spot within LLMs' cognitive range. To address these issues, we design the Thought Space Explorer (TSE), a novel framework to expand and optimize thought structures to guide LLMs to explore their blind spots of thinking. By generating new reasoning steps and branches based on the original thought structure with various designed strategies, TSE broadens the thought space and alleviates the impact of blind spots for LLM reasoning. Experimental results on multiple levels of reasoning tasks demonstrate the efficacy of TSE. We also conduct extensive analysis to understand how structured and expansive thought can contribute to unleashing the potential of LLM reasoning capabilities.
Abstract:Textual information of data is of vital importance for data mining and feature engineering. However, existing methods focus on learning the data structures and overlook the textual information along with the data. Consequently, they waste this valuable resource and miss out on the deeper data relationships embedded within the texts. In this paper, we introduce Text-Informed Feature Generation (TIFG), a novel LLM-based text-informed feature generation framework. TIFG utilizes the textual information to generate features by retrieving possible relevant features within external knowledge with Retrieval Augmented Generation (RAG) technology. In this approach, the TIFG can generate new explainable features to enrich the feature space and further mine feature relationships. We design the TIFG to be an automated framework that continuously optimizes the feature generation process, adapts to new data inputs, and improves downstream task performance over iterations. A broad range of experiments in various downstream tasks showcases that our approach can generate high-quality and meaningful features, and is significantly superior to existing methods.