Abstract:Existing 2D human pose estimation research predominantly concentrates on well-lit scenarios, with limited exploration of poor lighting conditions, which are a prevalent aspect of daily life. Recent studies on low-light pose estimation require the use of paired well-lit and low-light images with ground truths for training, which are impractical due to the inherent challenges associated with annotation on low-light images. To this end, we introduce a novel approach that eliminates the need for low-light ground truths. Our primary novelty lies in leveraging two complementary-teacher networks to generate more reliable pseudo labels, enabling our model achieves competitive performance on extremely low-light images without the need for training with low-light ground truths. Our framework consists of two stages. In the first stage, our model is trained on well-lit data with low-light augmentations. In the second stage, we propose a dual-teacher framework to utilize the unlabeled low-light data, where a center-based main teacher produces the pseudo labels for relatively visible cases, while a keypoints-based complementary teacher focuses on producing the pseudo labels for the missed persons of the main teacher. With the pseudo labels from both teachers, we propose a person-specific low-light augmentation to challenge a student model in training to outperform the teachers. Experimental results on real low-light dataset (ExLPose-OCN) show, our method achieves 6.8% (2.4 AP) improvement over the state-of-the-art (SOTA) method, despite no low-light ground-truth data is used in our approach, in contrast to the SOTA method. Our code will be available at:https://github.com/ayh015-dev/DA-LLPose.
Abstract:In multi-person 2D pose estimation, the bottom-up methods simultaneously predict poses for all persons, and unlike the top-down methods, do not rely on human detection. However, the SOTA bottom-up methods' accuracy is still inferior compared to the existing top-down methods. This is due to the predicted human poses being regressed based on the inconsistent human bounding box center and the lack of human-scale normalization, leading to the predicted human poses being inaccurate and small-scale persons being missed. To push the envelope of the bottom-up pose estimation, we firstly propose multi-scale training to enhance the network to handle scale variation with single-scale testing, particularly for small-scale persons. Secondly, we introduce dual anatomical centers (i.e., head and body), where we can predict the human poses more accurately and reliably, especially for small-scale persons. Moreover, existing bottom-up methods use multi-scale testing to boost the accuracy of pose estimation at the price of multiple additional forward passes, which weakens the efficiency of bottom-up methods, the core strength compared to top-down methods. By contrast, our multi-scale training enables the model to predict high-quality poses in a single forward pass (i.e., single-scale testing). Our method achieves 38.4\% improvement on bounding box precision and 39.1\% improvement on bounding box recall over the state of the art (SOTA) on the challenging small-scale persons subset of COCO. For the human pose AP evaluation, we achieve a new SOTA (71.0 AP) on the COCO test-dev set with the single-scale testing. We also achieve the top performance (40.3 AP) on OCHuman dataset in cross-dataset evaluation.