Abstract:As AI chips incorporate numerous parallelized cores to scale deep learning (DL) computing, inter-core communication is enabled recently by employing high-bandwidth and low-latency interconnect links on the chip (e.g., Graphcore IPU). It allows each core to directly access the fast scratchpad memory in other cores, which enables new parallel computing paradigms. However, without proper support for the scalable inter-core connections in current DL compilers, it is hard for developers to exploit the benefits of this new architecture. We present T10, the first DL compiler to exploit the inter-core communication bandwidth and distributed on-chip memory on AI chips. To formulate the computation and communication patterns of tensor operators in this new architecture, T10 introduces a distributed tensor abstraction rTensor. T10 maps a DNN model to execution plans with a generalized compute-shift pattern, by partitioning DNN computation into sub-operators and mapping them to cores, so that the cores can exchange data following predictable patterns. T10 makes globally optimized trade-offs between on-chip memory consumption and inter-core communication overhead, selects the best execution plan from a vast optimization space, and alleviates unnecessary inter-core communications. Our evaluation with a real inter-core connected AI chip, the Graphcore IPU, shows up to 3.3$\times$ performance improvement, and scalability support for larger models, compared to state-of-the-art DL compilers and vendor libraries.
Abstract:Cloud platforms today have been deploying hardware accelerators like neural processing units (NPUs) for powering machine learning (ML) inference services. To maximize the resource utilization while ensuring reasonable quality of service, a natural approach is to virtualize NPUs for efficient resource sharing for multi-tenant ML services. However, virtualizing NPUs for modern cloud platforms is not easy. This is not only due to the lack of system abstraction support for NPU hardware, but also due to the lack of architectural and ISA support for enabling fine-grained dynamic operator scheduling for virtualized NPUs. We present TCloud, a holistic NPU virtualization framework. We investigate virtualization techniques for NPUs across the entire software and hardware stack. TCloud consists of (1) a flexible NPU abstraction called vNPU, which enables fine-grained virtualization of the heterogeneous compute units in a physical NPU (pNPU); (2) a vNPU resource allocator that enables pay-as-you-go computing model and flexible vNPU-to-pNPU mappings for improved resource utilization and cost-effectiveness; (3) an ISA extension of modern NPU architecture for facilitating fine-grained tensor operator scheduling for multiple vNPUs. We implement TCloud based on a production-level NPU simulator. Our experiments show that TCloud improves the throughput of ML inference services by up to 1.4$\times$ and reduces the tail latency by up to 4.6$\times$, while improving the NPU utilization by 1.2$\times$ on average, compared to state-of-the-art NPU sharing approaches.
Abstract:Recent advances in large language models have demonstrated their potential for automated generation of hardware description language (HDL) code from high-level prompts. Researchers have utilized fine-tuning to enhance the ability of these large language models (LLMs) in the field of Chip Design. However, the lack of Verilog data hinders further improvement in the quality of Verilog generation by LLMs. Additionally, the absence of a Verilog and Electronic Design Automation (EDA) script data augmentation framework significantly increases the time required to prepare the training dataset for LLM trainers. This paper proposes an automated design-data augmentation framework, which generates high-volume and high-quality natural language aligned with Verilog and EDA scripts. For Verilog generation, it translates Verilog files to an abstract syntax tree and then maps nodes to natural language with a predefined template. For Verilog repair, it uses predefined rules to generate the wrong verilog file and then pairs EDA Tool feedback with the right and wrong verilog file. For EDA Script generation, it uses existing LLM(GPT-3.5) to obtain the description of the Script. To evaluate the effectiveness of our data augmentation method, we finetune Llama2-13B and Llama2-7B models using the dataset generated by our augmentation framework. The results demonstrate a significant improvement in the Verilog generation tasks with LLMs. Moreover, the accuracy of Verilog generation surpasses that of the current state-of-the-art open-source Verilog generation model, increasing from 58.8% to 70.6% with the same benchmark. Our 13B model (ChipGPT-FT) has a pass rate improvement compared with GPT-3.5 in Verilog generation and outperforms in EDA script (i.e., SiliconCompiler) generation with only 200 EDA script data.
Abstract:Decision-making processes increasingly rely on the use of algorithms. Yet, algorithms' predictive ability frequently exhibit systematic variation across subgroups of the population. While both fairness and accuracy are desirable properties of an algorithm, they often come at the cost of one another. What should a fairness-minded policymaker do then, when confronted with finite data? In this paper, we provide a consistent estimator for a theoretical fairness-accuracy frontier put forward by Liang, Lu and Mu (2023) and propose inference methods to test hypotheses that have received much attention in the fairness literature, such as (i) whether fully excluding a covariate from use in training the algorithm is optimal and (ii) whether there are less discriminatory alternatives to an existing algorithm. We also provide an estimator for the distance between a given algorithm and the fairest point on the frontier, and characterize its asymptotic distribution. We leverage the fact that the fairness-accuracy frontier is part of the boundary of a convex set that can be fully represented by its support function. We show that the estimated support function converges to a tight Gaussian process as the sample size increases, and then express policy-relevant hypotheses as restrictions on the support function to construct valid test statistics.
Abstract:Automatic evaluation of generated textual content presents an ongoing challenge within the field of NLP. Given the impressive capabilities of modern language models (LMs) across diverse NLP tasks, there is a growing trend to employ these models in creating innovative evaluation metrics for automated assessment of generation tasks. This paper investigates a pivotal question: Do language model-driven evaluation metrics inherently exhibit bias favoring texts generated by the same underlying language model? Specifically, we assess whether prominent LM-based evaluation metrics--namely, BARTScore, T5Score, and GPTScore--demonstrate a favorable bias toward their respective underlying LMs in the context of summarization tasks. Our findings unveil a latent bias, particularly pronounced when such evaluation metrics are used in an reference-free manner without leveraging gold summaries. These results underscore that assessments provided by generative evaluation models can be influenced by factors beyond the inherent text quality, highlighting the necessity of developing more dependable evaluation protocols in the future.
Abstract:To break the GPU memory wall for scaling deep learning workloads, a variety of architecture and system techniques have been proposed recently. Their typical approaches include memory extension with flash memory and direct storage access. However, these techniques still suffer from suboptimal performance and introduce complexity to the GPU memory management, making them hard to meet the scalability requirement of deep learning workloads today. In this paper, we present a unified GPU memory and storage architecture named G10 driven by the fact that the tensor behaviors of deep learning workloads are highly predictable. G10 integrates the host memory, GPU memory, and flash memory into a unified memory space, to scale the GPU memory capacity while enabling transparent data migrations. Based on this unified GPU memory and storage architecture, G10 utilizes compiler techniques to characterize the tensor behaviors in deep learning workloads. Therefore, it can schedule data migrations in advance by considering the available bandwidth of flash memory and host memory. The cooperative mechanism between deep learning compilers and the unified memory architecture enables G10 to hide data transfer overheads in a transparent manner. We implement G10 based on an open-source GPU simulator. Our experiments demonstrate that G10 outperforms state-of-the-art GPU memory solutions by up to 1.75$\times$, without code modifications to deep learning workloads. With the smart data migration mechanism, G10 can reach 90.3\% of the performance of the ideal case assuming unlimited GPU memory.
Abstract:In the era of extensive intersection between art and Artificial Intelligence (AI), such as image generation and fiction co-creation, AI for music remains relatively nascent, particularly in music understanding. This is evident in the limited work on deep music representations, the scarcity of large-scale datasets, and the absence of a universal and community-driven benchmark. To address this issue, we introduce the Music Audio Representation Benchmark for universaL Evaluation, termed MARBLE. It aims to provide a benchmark for various Music Information Retrieval (MIR) tasks by defining a comprehensive taxonomy with four hierarchy levels, including acoustic, performance, score, and high-level description. We then establish a unified protocol based on 14 tasks on 8 public-available datasets, providing a fair and standard assessment of representations of all open-sourced pre-trained models developed on music recordings as baselines. Besides, MARBLE offers an easy-to-use, extendable, and reproducible suite for the community, with a clear statement on copyright issues on datasets. Results suggest recently proposed large-scale pre-trained musical language models perform the best in most tasks, with room for further improvement. The leaderboard and toolkit repository are published at https://marble-bm.shef.ac.uk to promote future music AI research.
Abstract:Online Gaussian processes (GPs), typically used for learning models from time-series data, are more flexible and robust than offline GPs. Both local and sparse approximations of GPs can efficiently learn complex models online. Yet, these approaches assume that all signals are relatively accurate and that all data are available for learning without misleading data. Besides, the online learning capacity of GPs is limited for high-dimension problems and long-term tasks in practice. This paper proposes a sparse online GP (SOGP) with a forgetting mechanism to forget distant model information at a specific rate. The proposed approach combines two general data deletion schemes for the basis vector set of SOGP: The position information-based scheme and the oldest points-based scheme. We apply our approach to learn the inverse dynamics of a collaborative robot with 7 degrees of freedom under a two-segment trajectory tracking problem with task switching. Both simulations and experiments have shown that the proposed approach achieves better tracking accuracy and predictive smoothness compared with the two general data deletion schemes.