Abstract:To break the GPU memory wall for scaling deep learning workloads, a variety of architecture and system techniques have been proposed recently. Their typical approaches include memory extension with flash memory and direct storage access. However, these techniques still suffer from suboptimal performance and introduce complexity to the GPU memory management, making them hard to meet the scalability requirement of deep learning workloads today. In this paper, we present a unified GPU memory and storage architecture named G10 driven by the fact that the tensor behaviors of deep learning workloads are highly predictable. G10 integrates the host memory, GPU memory, and flash memory into a unified memory space, to scale the GPU memory capacity while enabling transparent data migrations. Based on this unified GPU memory and storage architecture, G10 utilizes compiler techniques to characterize the tensor behaviors in deep learning workloads. Therefore, it can schedule data migrations in advance by considering the available bandwidth of flash memory and host memory. The cooperative mechanism between deep learning compilers and the unified memory architecture enables G10 to hide data transfer overheads in a transparent manner. We implement G10 based on an open-source GPU simulator. Our experiments demonstrate that G10 outperforms state-of-the-art GPU memory solutions by up to 1.75$\times$, without code modifications to deep learning workloads. With the smart data migration mechanism, G10 can reach 90.3\% of the performance of the ideal case assuming unlimited GPU memory.
Abstract:The large language model (LLM) based agents have demonstrated their capacity to automate and expedite software development processes. In this paper, we focus on game development and propose a multi-agent collaborative framework, dubbed GameGPT, to automate game development. While many studies have pinpointed hallucination as a primary roadblock for deploying LLMs in production, we identify another concern: redundancy. Our framework presents a series of methods to mitigate both concerns. These methods include dual collaboration and layered approaches with several in-house lexicons, to mitigate the hallucination and redundancy in the planning, task identification, and implementation phases. Furthermore, a decoupling approach is also introduced to achieve code generation with better precision.
Abstract:3D Semantic Scene Completion (SSC) has emerged as a nascent and pivotal task for autonomous driving, as it involves predicting per-voxel occupancy within a 3D scene from partial LiDAR or image inputs. Existing methods primarily focus on the voxel-wise feature aggregation, while neglecting the instance-centric semantics and broader context. In this paper, we present a novel paradigm termed Symphonies (Scene-from-Insts) for SSC, which completes the scene volume from a sparse set of instance queries derived from the input with context awareness. By incorporating the queries as the instance feature representations within the scene, Symphonies dynamically encodes the instance-centric semantics to interact with the image and volume features while avoiding the dense voxel-wise modeling. Simultaneously, it orchestrates a more comprehensive understanding of the scenario by capturing context throughout the entire scene, contributing to alleviating the geometric ambiguity derived from occlusion and perspective errors. Symphonies achieves a state-of-the-art result of 13.02 mIoU on the challenging SemanticKITTI dataset, outperforming existing methods and showcasing the promising advancements of the paradigm. The code is available at \url{https://github.com/hustvl/Symphonies}.
Abstract:As an emerging approach, deep learning plays an increasingly influential role in channel modeling. Traditional ray tracing (RT) methods of channel modeling tend to be inefficient and expensive. In this paper, we present a super-resolution (SR) model for channel characteristics. Residual connection and attention mechanism are applied to this convolutional neural network (CNN) model. Experiments prove that the proposed model can reduce the noise interference generated in the SR process and solve the problem of low efficiency of RT. The mean absolute error of our channel SR model on the PL achieves the effect of 2.82 dB with scale factor 2, the same accuracy as RT took only 52\% of the time in theory. Compared with vision transformer (ViT), the proposed model also demonstrates less running time and computing cost in SR of channel characteristics.
Abstract:Video instance segmentation (VIS) aims at segmenting and tracking objects in videos. Prior methods typically generate frame-level or clip-level object instances first and then associate them by either additional tracking heads or complex instance matching algorithms. This explicit instance association approach increases system complexity and fails to fully exploit temporal cues in videos. In this paper, we design a simple, fast and yet effective query-based framework for online VIS. Relying on an instance query and proposal propagation mechanism with several specially developed components, this framework can perform accurate instance association implicitly. Specifically, we generate frame-level object instances based on a set of instance query-proposal pairs propagated from previous frames. This instance query-proposal pair is learned to bind with one specific object across frames through conscientiously developed strategies. When using such a pair to predict an object instance on the current frame, not only the generated instance is automatically associated with its precursors on previous frames, but the model gets a good prior for predicting the same object. In this way, we naturally achieve implicit instance association in parallel with segmentation and elegantly take advantage of temporal clues in videos. To show the effectiveness of our method InsPro, we evaluate it on two popular VIS benchmarks, i.e., YouTube-VIS 2019 and YouTube-VIS 2021. Without bells-and-whistles, our InsPro with ResNet-50 backbone achieves 43.2 AP and 37.6 AP on these two benchmarks respectively, outperforming all other online VIS methods.
Abstract:This paper presents a unified framework for depth-aware panoptic segmentation (DPS), which aims to reconstruct 3D scene with instance-level semantics from one single image. Prior works address this problem by simply adding a dense depth regression head to panoptic segmentation (PS) networks, resulting in two independent task branches. This neglects the mutually-beneficial relations between these two tasks, thus failing to exploit handy instance-level semantic cues to boost depth accuracy while also producing sub-optimal depth maps. To overcome these limitations, we propose a unified framework for the DPS task by applying a dynamic convolution technique to both the PS and depth prediction tasks. Specifically, instead of predicting depth for all pixels at a time, we generate instance-specific kernels to predict depth and segmentation masks for each instance. Moreover, leveraging the instance-wise depth estimation scheme, we add additional instance-level depth cues to assist with supervising the depth learning via a new depth loss. Extensive experiments on Cityscapes-DPS and SemKITTI-DPS show the effectiveness and promise of our method. We hope our unified solution to DPS can lead a new paradigm in this area. Code is available at https://github.com/NaiyuGao/PanopticDepth.
Abstract:Recent Semantic SLAM methods combine classical geometry-based estimation with deep learning-based object detection or semantic segmentation. In this paper we evaluate the quality of semantic maps generated by state-of-the-art class- and instance-aware dense semantic SLAM algorithms whose codes are publicly available and explore the impacts both semantic segmentation and pose estimation have on the quality of semantic maps. We obtain these results by providing algorithms with ground-truth pose and/or semantic segmentation data available from simulated environments. We establish that semantic segmentation is the largest source of error through our experiments, dropping mAP and OMQ performance by up to 74.3% and 71.3% respectively.
Abstract:The Internet contains a wealth of public opinion on food safety, including views on food adulteration, food-borne diseases, agricultural pollution, irregular food distribution, and food production issues. In order to systematically collect and analyse public opinion on food safety, we developed IFoodCloud, a platform for the real-time sentiment analysis of public opinion on food safety in China. It collects data from more than 3,100 public sources that can be used to explore public opinion trends, public sentiment, and regional attention differences of food safety incidents. At the same time, we constructed a sentiment classification model using multiple lexicon-based and deep learning-based algorithms integrated with IFoodCloud that provide an unprecedented rapid means of understanding the public sentiment toward specific food safety incidents. Our best model's F1-score achieved 0.9737. Further, three real-world cases are presented to demonstrate the application and robustness. IFoodCloud could be considered a valuable tool for promote scientisation of food safety supervision and risk communication.
Abstract:Do you want to improve 1.0 AP for your object detector without any inference cost and any change to your detector? Let us tell you such a recipe. It is surprisingly simple: train your detector for an extra 12 epochs using cyclical learning rates and then average these 12 checkpoints as your final detection model. This potent recipe is inspired by Stochastic Weights Averaging (SWA), which is proposed in arXiv:1803.05407 for improving generalization in deep neural networks. We found it also very effective in object detection. In this technique report, we systematically investigate the effects of applying SWA to object detection as well as instance segmentation. Through extensive experiments, we discover a good policy of performing SWA in object detection, and we consistently achieve $\sim$1.0 AP improvement over various popular detectors on the challenging COCO benchmark. We hope this work will make more researchers in object detection know this technique and help them train better object detectors. Code is available at: https://github.com/hyz-xmaster/swa_object_detection .
Abstract:Being able to explore an environment and understand the location and type of all objects therein is important for indoor robotic platforms that must interact closely with humans. However, it is difficult to evaluate progress in this area due to a lack of standardized testing which is limited due to the need for active robot agency and perfect object ground-truth. To help provide a standard for testing scene understanding systems, we present a new robot vision scene understanding challenge using simulation to enable repeatable experiments with active robot agency. We provide two challenging task types, three difficulty levels, five simulated environments and a new evaluation measure for evaluating 3D cuboid object maps. Our aim is to drive state-of-the-art research in scene understanding through enabling evaluation and comparison of active robotic vision systems.