Abstract:In this paper, we propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention. Current anchor-based monocular 3D object detection methods suffer from feature mismatching. To overcome this, we propose a two-step feature alignment approach. In the first step, the shape alignment is performed to enable the receptive field of the feature map to focus on the pre-defined anchors with high confidence scores. In the second step, the center alignment is used to align the features at 2D/3D centers. Further, it is often difficult to learn global information and capture long-range relationships, which are important for the depth prediction of objects. Therefore, we propose a novel asymmetric non-local attention block with multi-scale sampling to extract depth-wise features. The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset, in both 3D object detection and bird's eye view tasks.
Abstract:Most existing point cloud based 3D object detectors focus on the tasks of classification and box regression. However, another bottleneck in this area is achieving an accurate detection confidence for the Non-Maximum Suppression (NMS) post-processing. In this paper, we add a 3D IoU prediction branch to the regular classification and regression branches. The predicted IoU is used as the detection confidence for NMS. In order to obtain a more accurate IoU prediction, we propose a 3D IoU-Net with IoU sensitive feature learning and an IoU alignment operation. To obtain a perspective-invariant prediction head, we propose an Attentive Corner Aggregation (ACA) module by aggregating a local point cloud feature from each perspective of eight corners and adaptively weighting the contribution of each perspective with different attentions. We propose a Corner Geometry Encoding (CGE) module for geometry information embedding. To the best of our knowledge, this is the first time geometric embedding information has been introduced in proposal feature learning. These two feature parts are then adaptively fused by a multi-layer perceptron (MLP) network as our IoU sensitive feature. The IoU alignment operation is introduced to resolve the mismatching between the bounding box regression head and IoU prediction, thereby further enhancing the accuracy of IoU prediction. The experimental results on the KITTI car detection benchmark show that 3D IoU-Net with IoU perception achieves state-of-the-art performance.