Abstract:In recent years, data science agents powered by Large Language Models (LLMs), known as "data agents," have shown significant potential to transform the traditional data analysis paradigm. This survey provides an overview of the evolution, capabilities, and applications of LLM-based data agents, highlighting their role in simplifying complex data tasks and lowering the entry barrier for users without related expertise. We explore current trends in the design of LLM-based frameworks, detailing essential features such as planning, reasoning, reflection, multi-agent collaboration, user interface, knowledge integration, and system design, which enable agents to address data-centric problems with minimal human intervention. Furthermore, we analyze several case studies to demonstrate the practical applications of various data agents in real-world scenarios. Finally, we identify key challenges and propose future research directions to advance the development of data agents into intelligent statistical analysis software.
Abstract:This paper presents a machine-learning study for solar inverter power regulation in a remote microgrid. Machine learning models for active and reactive power control are respectively trained using an ensemble learning method. Then, unlike conventional schemes that make inferences on a central server in the far-end control center, the proposed scheme deploys the trained models on an embedded edge-computing device near the inverter to reduce the communication delay. Experiments on a real embedded device achieve matched results as on the desktop PC, with about 0.1ms time cost for each inference input.
Abstract:This white paper, developed through close collaboration between IBM Research and UIUC researchers within the IIDAI Institute, envisions transforming hybrid cloud systems to meet the growing complexity of AI workloads through innovative, full-stack co-design approaches, emphasizing usability, manageability, affordability, adaptability, efficiency, and scalability. By integrating cutting-edge technologies such as generative and agentic AI, cross-layer automation and optimization, unified control plane, and composable and adaptive system architecture, the proposed framework addresses critical challenges in energy efficiency, performance, and cost-effectiveness. Incorporating quantum computing as it matures will enable quantum-accelerated simulations for materials science, climate modeling, and other high-impact domains. Collaborative efforts between academia and industry are central to this vision, driving advancements in foundation models for material design and climate solutions, scalable multimodal data processing, and enhanced physics-based AI emulators for applications like weather forecasting and carbon sequestration. Research priorities include advancing AI agentic systems, LLM as an Abstraction (LLMaaA), AI model optimization and unified abstractions across heterogeneous infrastructure, end-to-end edge-cloud transformation, efficient programming model, middleware and platform, secure infrastructure, application-adaptive cloud systems, and new quantum-classical collaborative workflows. These ideas and solutions encompass both theoretical and practical research questions, requiring coordinated input and support from the research community. This joint initiative aims to establish hybrid clouds as secure, efficient, and sustainable platforms, fostering breakthroughs in AI-driven applications and scientific discovery across academia, industry, and society.
Abstract:Semi-supervised learning (SSL) offers a robust framework for harnessing the potential of unannotated data. Traditionally, SSL mandates that all classes possess labeled instances. However, the emergence of open-world SSL (OwSSL) introduces a more practical challenge, wherein unlabeled data may encompass samples from unseen classes. This scenario leads to misclassification of unseen classes as known ones, consequently undermining classification accuracy. To overcome this challenge, this study revisits two methodologies from self-supervised and semi-supervised learning, self-labeling and consistency, tailoring them to address the OwSSL problem. Specifically, we propose an effective framework called OwMatch, combining conditional self-labeling and open-world hierarchical thresholding. Theoretically, we analyze the estimation of class distribution on unlabeled data through rigorous statistical analysis, thus demonstrating that OwMatch can ensure the unbiasedness of the self-label assignment estimator with reliability. Comprehensive empirical analyses demonstrate that our method yields substantial performance enhancements across both known and unknown classes in comparison to previous studies. Code is available at https://github.com/niusj03/OwMatch.
Abstract:Implicit neural representation and explicit 3D Gaussian Splatting (3D-GS) for novel view synthesis have achieved remarkable progress with frame-based camera (e.g. RGB and RGB-D cameras) recently. Compared to frame-based camera, a novel type of bio-inspired visual sensor, i.e. event camera, has demonstrated advantages in high temporal resolution, high dynamic range, low power consumption and low latency. Due to its unique asynchronous and irregular data capturing process, limited work has been proposed to apply neural representation or 3D Gaussian splatting for an event camera. In this work, we present IncEventGS, an incremental 3D Gaussian Splatting reconstruction algorithm with a single event camera. To recover the 3D scene representation incrementally, we exploit the tracking and mapping paradigm of conventional SLAM pipelines for IncEventGS. Given the incoming event stream, the tracker firstly estimates an initial camera motion based on prior reconstructed 3D-GS scene representation. The mapper then jointly refines both the 3D scene representation and camera motion based on the previously estimated motion trajectory from the tracker. The experimental results demonstrate that IncEventGS delivers superior performance compared to prior NeRF-based methods and other related baselines, even we do not have the ground-truth camera poses. Furthermore, our method can also deliver better performance compared to state-of-the-art event visual odometry methods in terms of camera motion estimation. Code is publicly available at: https://github.com/wu-cvgl/IncEventGS.
Abstract:As AI chips incorporate numerous parallelized cores to scale deep learning (DL) computing, inter-core communication is enabled recently by employing high-bandwidth and low-latency interconnect links on the chip (e.g., Graphcore IPU). It allows each core to directly access the fast scratchpad memory in other cores, which enables new parallel computing paradigms. However, without proper support for the scalable inter-core connections in current DL compilers, it is hard for developers to exploit the benefits of this new architecture. We present T10, the first DL compiler to exploit the inter-core communication bandwidth and distributed on-chip memory on AI chips. To formulate the computation and communication patterns of tensor operators in this new architecture, T10 introduces a distributed tensor abstraction rTensor. T10 maps a DNN model to execution plans with a generalized compute-shift pattern, by partitioning DNN computation into sub-operators and mapping them to cores, so that the cores can exchange data following predictable patterns. T10 makes globally optimized trade-offs between on-chip memory consumption and inter-core communication overhead, selects the best execution plan from a vast optimization space, and alleviates unnecessary inter-core communications. Our evaluation with a real inter-core connected AI chip, the Graphcore IPU, shows up to 3.3$\times$ performance improvement, and scalability support for larger models, compared to state-of-the-art DL compilers and vendor libraries.
Abstract:Cloud platforms today have been deploying hardware accelerators like neural processing units (NPUs) for powering machine learning (ML) inference services. To maximize the resource utilization while ensuring reasonable quality of service, a natural approach is to virtualize NPUs for efficient resource sharing for multi-tenant ML services. However, virtualizing NPUs for modern cloud platforms is not easy. This is not only due to the lack of system abstraction support for NPU hardware, but also due to the lack of architectural and ISA support for enabling fine-grained dynamic operator scheduling for virtualized NPUs. We present TCloud, a holistic NPU virtualization framework. We investigate virtualization techniques for NPUs across the entire software and hardware stack. TCloud consists of (1) a flexible NPU abstraction called vNPU, which enables fine-grained virtualization of the heterogeneous compute units in a physical NPU (pNPU); (2) a vNPU resource allocator that enables pay-as-you-go computing model and flexible vNPU-to-pNPU mappings for improved resource utilization and cost-effectiveness; (3) an ISA extension of modern NPU architecture for facilitating fine-grained tensor operator scheduling for multiple vNPUs. We implement TCloud based on a production-level NPU simulator. Our experiments show that TCloud improves the throughput of ML inference services by up to 1.4$\times$ and reduces the tail latency by up to 4.6$\times$, while improving the NPU utilization by 1.2$\times$ on average, compared to state-of-the-art NPU sharing approaches.
Abstract:We introduce ``LAMBDA," a novel open-source, code-free multi-agent data analysis system that that harnesses the power of large models. LAMBDA is designed to address data analysis challenges in complex data-driven applications through the use of innovatively designed data agents that operate iteratively and generatively using natural language. At the core of LAMBDA are two key agent roles: the programmer and the inspector, which are engineered to work together seamlessly. Specifically, the programmer generates code based on the user's instructions and domain-specific knowledge, enhanced by advanced models. Meanwhile, the inspector debugs the code when necessary. To ensure robustness and handle adverse scenarios, LAMBDA features a user interface that allows direct user intervention in the operational loop. Additionally, LAMBDA can flexibly integrate external models and algorithms through our knowledge integration mechanism, catering to the needs of customized data analysis. LAMBDA has demonstrated strong performance on various machine learning datasets. It has the potential to enhance data science practice and analysis paradigm by seamlessly integrating human and artificial intelligence, making it more accessible, effective, and efficient for individuals from diverse backgrounds. The strong performance of LAMBDA in solving data science problems is demonstrated in several case studies, which are presented at \url{https://www.polyu.edu.hk/ama/cmfai/lambda.html}.
Abstract:We propose a Bayesian framework for fine-tuning large diffusion models with a novel network structure called Bayesian Power Steering (BPS). We clarify the meaning behind adaptation from a \textit{large probability space} to a \textit{small probability space} and explore the task of fine-tuning pre-trained models using learnable modules from a Bayesian perspective. BPS extracts task-specific knowledge from a pre-trained model's learned prior distribution. It efficiently leverages large diffusion models, differentially intervening different hidden features with a head-heavy and foot-light configuration. Experiments highlight the superiority of BPS over contemporary methods across a range of tasks even with limited amount of data. Notably, BPS attains an FID score of 10.49 under the sketch condition on the COCO17 dataset.
Abstract:Online statistical inference facilitates real-time analysis of sequentially collected data, making it different from traditional methods that rely on static datasets. This paper introduces a novel approach to online inference in high-dimensional generalized linear models, where we update regression coefficient estimates and their standard errors upon each new data arrival. In contrast to existing methods that either require full dataset access or large-dimensional summary statistics storage, our method operates in a single-pass mode, significantly reducing both time and space complexity. The core of our methodological innovation lies in an adaptive stochastic gradient descent algorithm tailored for dynamic objective functions, coupled with a novel online debiasing procedure. This allows us to maintain low-dimensional summary statistics while effectively controlling optimization errors introduced by the dynamically changing loss functions. We demonstrate that our method, termed the Approximated Debiased Lasso (ADL), not only mitigates the need for the bounded individual probability condition but also significantly improves numerical performance. Numerical experiments demonstrate that the proposed ADL method consistently exhibits robust performance across various covariance matrix structures.