Abstract:Inverse rendering aims at recovering both geometry and materials of objects. It provides a more compatible reconstruction for conventional rendering engines, compared with the neural radiance fields (NeRFs). On the other hand, existing NeRF-based inverse rendering methods cannot handle glossy objects with local light interactions well, as they typically oversimplify the illumination as a 2D environmental map, which assumes infinite lights only. Observing the superiority of NeRFs in recovering radiance fields, we propose a novel 5D Neural Plenoptic Function (NeP) based on NeRFs and ray tracing, such that more accurate lighting-object interactions can be formulated via the rendering equation. We also design a material-aware cone sampling strategy to efficiently integrate lights inside the BRDF lobes with the help of pre-filtered radiance fields. Our method has two stages: the geometry of the target object and the pre-filtered environmental radiance fields are reconstructed in the first stage, and materials of the target object are estimated in the second stage with the proposed NeP and material-aware cone sampling strategy. Extensive experiments on the proposed real-world and synthetic datasets demonstrate that our method can reconstruct high-fidelity geometry/materials of challenging glossy objects with complex lighting interactions from nearby objects. Project webpage: https://whyy.site/paper/nep
Abstract:Neural Radiance Field (NeRF) is a promising approach for synthesizing novel views, given a set of images and the corresponding camera poses of a scene. However, images photographed from a low-light scene can hardly be used to train a NeRF model to produce high-quality results, due to their low pixel intensities, heavy noise, and color distortion. Combining existing low-light image enhancement methods with NeRF methods also does not work well due to the view inconsistency caused by the individual 2D enhancement process. In this paper, we propose a novel approach, called Low-Light NeRF (or LLNeRF), to enhance the scene representation and synthesize normal-light novel views directly from sRGB low-light images in an unsupervised manner. The core of our approach is a decomposition of radiance field learning, which allows us to enhance the illumination, reduce noise and correct the distorted colors jointly with the NeRF optimization process. Our method is able to produce novel view images with proper lighting and vivid colors and details, given a collection of camera-finished low dynamic range (8-bits/channel) images from a low-light scene. Experiments demonstrate that our method outperforms existing low-light enhancement methods and NeRF methods.
Abstract:Abstract visual reasoning connects mental abilities to the physical world, which is a crucial factor in cognitive development. Most toddlers display sensitivity to this skill, but it is not easy for machines. Aimed at it, we focus on the Raven Progressive Matrices Test, designed to measure cognitive reasoning. Recent work designed some black-boxes to solve it in an end-to-end fashion, but they are incredibly complicated and difficult to explain. Inspired by cognitive studies, we propose a Multi-Granularity Modularized Network (MMoN) to bridge the gap between the processing of raw sensory information and symbolic reasoning. Specifically, it learns modularized reasoning functions to model the semantic rule from the visual grounding in a neuro-symbolic and semi-supervision way. To comprehensively evaluate MMoN, our experiments are conducted on the dataset of both seen and unseen reasoning rules. The result shows that MMoN is well suited for abstract visual reasoning and also explainable on the generalization test.