Abstract:SLAM is an important capability for many autonomous systems, and modern LiDAR-based methods offer promising performance. However, for long duration missions, existing works that either operate directly the full pointclouds or on extracted features face key tradeoffs in accuracy and computational efficiency (e.g., memory consumption). To address these issues, this paper presents DFLIOM with several key innovations. Unlike previous methods that rely on handcrafted heuristics and hand-tuned parameters for feature extraction, we propose a learning-based approach that select points relevant to LiDAR SLAM pointcloud registration. Furthermore, we extend our prior work DLIOM with the learned feature extractor and observe our method enables similar or even better localization performance using only about 20\% of the points in the dense point clouds. We demonstrate that DFLIOM performs well on multiple public benchmarks, achieving a 2.4\% decrease in localization error and 57.5\% decrease in memory usage compared to state-of-the-art methods (DLIOM). Although extracting features with the proposed network requires extra time, it is offset by the faster processing time downstream, thus maintaining real-time performance using 20Hz LiDAR on our hardware setup. The effectiveness of our learning-based feature extraction module is further demonstrated through comparison with several handcrafted feature extractors.
Abstract:While grasp detection is an important part of any robotic manipulation pipeline, reliable and accurate grasp detection in $SE(3)$ remains a research challenge. Many robotics applications in unstructured environments such as the home or warehouse would benefit a lot from better grasp performance. This paper proposes a novel framework for detecting $SE(3)$ grasp poses based on point cloud input. Our main contribution is to propose an $SE(3)$-equivariant model that maps each point in the cloud to a continuous grasp quality function over the 2-sphere $S^2$ using a spherical harmonic basis. Compared with reasoning about a finite set of samples, this formulation improves the accuracy and efficiency of our model when a large number of samples would otherwise be needed. In order to accomplish this, we propose a novel variation on EquiFormerV2 that leverages a UNet-style backbone to enlarge the number of points the model can handle. Our resulting method, which we name $\textit{OrbitGrasp}$, significantly outperforms baselines in both simulation and physical experiments.
Abstract:For many multiagent control problems, neural networks (NNs) have enabled promising new capabilities. However, many of these systems lack formal guarantees (e.g., collision avoidance, robustness), which prevents leveraging these advances in safety-critical settings. While there is recent work on formal verification of NN-controlled systems, most existing techniques cannot handle scenarios with more than one agent. To address this research gap, this paper presents a backward reachability-based approach for verifying the collision avoidance properties of Multi-Agent Neural Feedback Loops (MA-NFLs). Given the dynamics models and trained control policies of each agent, the proposed algorithm computes relative backprojection sets by solving a series of Mixed Integer Linear Programs (MILPs) offline for each pair of agents. Our pair-wise approach is parallelizable and thus scales well with increasing number of agents, and we account for state measurement uncertainties, making it well aligned with real-world scenarios. Using those results, the agents can quickly check for collision avoidance online by solving low-dimensional Linear Programs (LPs). We demonstrate the proposed algorithm can verify collision-free properties of a MA-NFL with agents trained to imitate a collision avoidance algorithm (Reciprocal Velocity Obstacles). We further demonstrate the computational scalability of the approach on systems with up to 10 agents.
Abstract:While graph neural networks have achieved state-of-the-art performances in many real-world tasks including graph classification and node classification, recent works have demonstrated they are also extremely vulnerable to adversarial attacks. Most previous works have focused on attacking node classification networks under impractical white-box scenarios. In this work, we will propose a non-targeted Hard Label Black Box Node Injection Attack on Graph Neural Networks, which to the best of our knowledge, is the first of its kind. Under this setting, more real world tasks can be studied because our attack assumes no prior knowledge about (1): the model architecture of the GNN we are attacking; (2): the model's gradients; (3): the output logits of the target GNN model. Our attack is based on an existing edge perturbation attack, from which we restrict the optimization process to formulate a node injection attack. In the work, we will evaluate the performance of the attack using three datasets, COIL-DEL, IMDB-BINARY, and NCI1.
Abstract:Label noise is pervasive in real-world datasets, which encodes wrong correlation patterns and impairs the generalization of deep neural networks (DNNs). It is critical to find efficient ways to detect the corrupted patterns. Current methods primarily focus on designing robust training techniques to prevent DNNs from memorizing corrupted patterns. This approach has two outstanding caveats: 1) applying this approach to each individual dataset would often require customized training processes; 2) as long as the model is trained with noisy supervisions, overfitting to corrupted patterns is often hard to avoid, leading to performance drop in detection. In this paper, given good representations, we propose a universally applicable and training-free solution to detect noisy labels. Intuitively, good representations help define ``neighbors'' of each training instance, and closer instances are more likely to share the same clean label. Based on the neighborhood information, we propose two methods: the first one uses ``local voting" via checking the noisy label consensuses of nearby representations. The second one is a ranking-based approach that scores each instance and filters out a guaranteed number of instances that are likely to be corrupted, again using only representations. Given good (but possibly imperfect) representations that are commonly available in practice, we theoretically analyze how they affect the local voting and provide guidelines for tuning neighborhood size. We also prove the worst-case error bound for the ranking-based method. Experiments with both synthetic and real-world label noise demonstrate our training-free solutions are consistently and significantly improving over most of the training-based baselines. Code is available at github.com/UCSC-REAL/SimiRep.